

IG Valley, Madurai Main Road, Manikandam, Tiruchirappalli - 620012

NAAC DOCUMENTS

QUALITY INDICATOR FRAME WORK

CRITERION – 1

CURRICULAR ASPECTS

SUBMITTED BY

IQAC INTERNAL QUALITY ASSURANCE CELL INDRA GANESAN COLLEGE OF ENGINEERING

Criteria 1

Curricular Aspects

100

- **1.1 Curricular Planning and Implementation (20)**
- 1.1.1 The Institution ensures effective curriculum planning and delivery through a well-planned and documented process including Academic calendar and conduct of continuous internal Assessment

Table of Content

S. No	Description
1.	Preface of the Course File
2.	Review of Course File
3.	Faculty Time Table
4.	Course Plan
5.	Course Committee Meeting
6.	Content Beyond Syllabus
7.	Rubrics Base Evaluation
8.	Academic Audit Form
9.	Student Feed Back on Faculty
10.	Internal Assessment Schedule
11.	Question Paper
12.	Answer Key
13.	Sample Answer Sheet
14.	Co Based Mark Entry
15.	Root Cause Analysis
16.	Retest Question Paper
17.	Retest Sample Answer Sheet
18.	Retest Co Based Mark Entry

INDRA GANESAN COLLEGE OF ENGINEERING

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF MECHANICAL ENGINEERING

PREFACE OF THE COURSE FILE

Batch	: 2017-2021
Academic Year	: 2018-2019 / EVEN
Program	: MECHANICAL ENGINEERING
Year & Semester	: 2 nd Year / 4 th Semester
Course Code	: ME8493
Name of the Course	: Thermal Engineering - I
Faculty in-charge	: Mr.P.Venkatesan, AP/Mechanical

Signature of the Faculty in-charge

inical

Dr. G. Balakrishnan, M.E., Ph.D., Principal Indra Ganesan College of Engineering IG Valley, Madural Main Road Manikandam, Trichy-620 012.

Indra Ganesan College of Engineering

Department of Mehanical Engineering

l Year LH 202	09.15 - 10.05	10.05 - 10.55		11.10 - 12.00	12.00 - 12.50		01.20 - 02.10	02.10 - 03.00		03.10 - 04.00
Period	1	2		3	4	1	5	6		7
Mon	EM	ENG	X	MAT	ENG	풍	MS	MAT	AK	BEIE
Tue	MS	MAT	RE	EVS	EP.LAB	LUNCH	EP.LAB	EP.LAB	BRE	EP.LAB
Wed	ENG	BEIE	<u> </u>	EM	MAT		EM	MS		EVS
Thu	BEIE	EVS	1	EM	BEEI		BEEI	BEEI		BEEI
Fri	MAT	EM	1	BEIE	MS	1	EVS	ENG		EM

II Year	09.15 - 10.05	10.05 - 10.55		11.10 - 12.00	12.00 - 12.50		01.20 - 02.10	02.10 - 03.00		03.10 - 04.00
LH 101 Period	10.03	2		3	4	1	5	6		7
Mon	SNM	SOM	AK	EM	KOM	ਲ	TE-I	Adv. R&W	AK	Adv R&W
Tue	MT-II	SOM	BRE	KOM	SNM	Š	EM	TE-I	BRE	SOMLAB
Wed	KOM	SNM	20	MT-II	EM		SOM	SNM	ш	TE-I
Thu	TE-I	KOM	1	SNM	MT-II	1	SOM LAB	SOM LAB		SOM LAB
Fri	EM	MT-II	1	SOM	MT LAB-II		MT LAB-II	MT LAB-II		MT LAB-II

III Year LH 102	09.15 - 10.05	10.05 - 10.55		11.10 - 12.00	12.00 - 12.50		01.20 - 02.10	02.10 - 03.00		03.10 - 04.00
Period	1	2		3	4		5	6		7
Mon	GDJP	FEA	¥	UCMP	DTS	H	GDJP	AE	AK	POM
Tue	FEA	UCMP	R	DTS	AE	UNCH	FEA	POM	BRE	AE
Wed	UCMP	POM	- 60	FEA	COM.LAB		COM.LAB	COM.LAB		COM.LAB
Thu	AE	GDJP	1	DTS	UCMP		CAD LAB	CAD LAB		CAD LAB
Fri	POM	DTS	1	GDJP	DFP		DFP	DFP		DFP

IV Year LH 103	09.15 - 10.05	10.05 - 10.55		11.10 - 12.00	12.00 - 12.50		01.20 - 02.10	02.10 - 03.00		03.10 - 04.00
Period	1	2		3	4		5	6		7
Mon	AIC	EE	X	PPC	TATS	£	PROJECT	PROJECT	AK	PROJECT
Tue	EE	PPC	RE	AIC	TATS	Ň	PROJECT	PROJECT	BRE	TATS
Wed	PPC	AIC	20	EE	TATS	I	TATS	TATS	<u></u>	TATS
Thu	EE	TATS		AIC	PPC		TATS	TATS		TATS
	PROJECT	PROJECT		PROJEC	PROJECT		PROJECT	PROJECT		PROJECT

Dr.S.BHARATHI RAJA PRINCIPAL

Dr. G. Balakrishnan, M.E., Ph.D., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012

THERMAL ENGINEERING - I

ġ

OBJECTIVES:

To integrate the concepts, laws and methodologies from the first course in thermodynamics into analysis of cyclic processes

To apply the thermodynamic concepts into various thermal application like IC engines, Steam.

Turbines, Compressors and Refrigeration and Air conditioning systems

(Use of standard refrigerant property data book, Steam Tables, Mollier diagram and Psychrometric chart permitted)

UNIT I GAS AND STEAM POWER CYCLES

Air Standard Cycles - Otto, Diesel, Dual, Brayton – Cycle Analysis, Performance and Comparison – Rankine, reheat and regenerative cycle.

UNIT II RECIPROCATING AIR COMPRESSOR

Classification and comparison, working principle, work of compression - with and without clearance, Volumetric efficiency, Isothermal efficiency and Isentropic efficiency. Multistage air compressor with Intercooling. Working principle and comparison of Rotary compressors with reciprocating air compressors.

UNIT III INTERNAL COMBUSTION ENGINES AND COMBUSTION

IC engine – Classification, working, components and their functions. Ideal and actual : Valve and port timing diagrams, p-v diagrams- two stroke & four stroke, and SI & Cl engines – comparison. Geometric, operating, and performance comparison of SI and Cl engines. Desirable properties and qualities of fuels. Air-fuel ratio calculation – lean and rich mixtures. Combustion in SI & Cl Engines – Knocking – phenomena and control

UNIT IV INTERNAL COMBUSTION ENGINE PERFORMANCE AND SYSTEMS

Performance parameters and calculations. Morse and Heat Balance tests. Multipoint Fuel Injection system and Common Rail Direct Injection systems. Ignition systems – Magneto, Battery and Electronic. Lubrication and Cooling systems. Concepts of Supercharging and Turbocharging – Emission Norms.

UNIT V GAS TURBINES

Gas turbine cycle analysis - open and closed cycle. Performance and its improvement - Regenerative, Intercooled, Reheated cycles and their combinations. Materials for Turbines.

TOTAL:45 PERIODS

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Apply thermodynamic concepts to different air standard cycles and solve problems
- CO2 Solve problems in single stage and multistage air compressors
- CO3 Explain the functioning and features of IC engines, components and auxiliaries
- CO4 Calculate performance parameters of IC Engines.
- CO5 Explain the flow in Gas turbines and solve problems.
- CO6 Explain the various Gas turbine cycles.

TEXT BOOKS:

- 1. Kothandaraman.C.P., Domkundwar. S,Domkundwar. A.V., "A course in thermal Engineering", Fifth Edition, "Dhanpat Rai & sons, 2016
- 2. Rajput. R. K., "Thermal Engineering" S.Chand Publishers, 2017

Dr. G. Balakrishnan, M.E., Ph.D. Principal Indra Ganesan College of Engineszing IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

Q

ME8493

REFERENCES:

- Arora.C.P., "Refrigeration and Air Conditioning ," Tata McGraw-Hill Publishers 2008
 Ganesan V.." Internal Combustion Engines", Third Edition, Tata Mcgraw-Hill 2012
 Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.
 Rudramoorthy, R, "Thermal Engineering ",Tata McGraw-Hill, New Delhi,2003
 Sarkar, B.K, "Thermal Engineering" Tata McGraw-Hill Publishers, 2007

Dr. G. Bala inan, M.E., Ph.D., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

INDRA GANESAN COLLEGE OF ENGINEERING

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF MECHANICAL ENGINEERING

Lecture Schedule

Degree/Program: B.E / MECHANICAL Duration: Dec 2018 - Apr 2019 AIM: Course code &Name: ME 8493-Thermal Engineering – I Semester: IV Faculty: Mr. P. Venkatesan

To expose the students to basics laws of thermodynamics and to apply the concepts into various thermal applications such as IC engines, Gas Turbines, etc.

OBJECTIVES:

To impart knowledge on

(i) To integrate the concepts, laws and methodologies from the first course in thermodynamics into analysis of cyclic processes

(ii) To apply the thermodynamic concepts into various thermal application like IC engines, Steam.

(iii) Turbines, Compressors and Refrigeration and Air conditioning systems

PREREOUISITES: Thermal Engineering - I

COURSE OUTCOMES:

After the course, the student should be able to:

CO	Course Outcomes	POs	PSOs
CO215.1	Apply thermodynamic concepts to different air standard cycles and solve problems.	1,2,3,4,7,9	1,2,3
CO215.2	Solve problems in single stage and multistage air compressors	1,2,3,4,7,9	1,2,3
CO215.3	Explain the functioning and features of IC engines, components and auxiliaries.	1,2,3,4,7,9	1,2,3
CO215.4	Calculate performance parameters of IC Engines.	1,2,3,4,7,9	1,2,3
CO215.5	Explain the flow in Gas turbines and solve problems.	1,2,3,4,7,9	1,2,3
CO215.6	Differentiate Concepts of Supercharging and Turbocharging	1,2,3,4,7,9	1,2,3

S.No	Date	Period	Topics to be Covered	Book & Page. No.
UNIT			EAM POWER CYCLES	Target periods :09
1	17.12.18	5	Air Standard Cycles	T1
2	18.12.18	6	Otto Cycles, Diesel Cycles	TI
3	19.12.18	7	Dual Cycles, Brayton Cycles	TI
4	20.12.18	1	Cycle Analysis	TI
5	24.12.18	5	Performance and Comparison - Rankine Cycles	TI
6	25.12.18	6	Performance and Comparison - reheat Cycles	R2
7	26.12.18	7	Performance and Comparison – regenerative cycle	R2
8	27.12.18	1	Problems on Rankine cycle	R2
9	31.12.18	5	Problems on Reheat cycle	R2

Dr. G. Balakrishnan, M.E., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

10	02.01.19	6	Problems on Rankine cycle and reheat cycle	<u>T1</u>
11	03.01.19	7	Problems on Reheat cycle and Regenerative cycle	<u>T1</u>
12	05.01.19	1	Problems on Regenerative cycle	<u>T1</u>
UNIT	II -RECIP	ROCA		et periods :0
13	07.01.19	5	Classification and comparison of comprossor	T1
14	08.01.19	6	working principle, work of compression	T1
15	09.01.19	7	Compression with and without clearance	T1
16	10.01.19	1	Volumetric efficiency, Isothermal efficiency	T1
17	19.01.19	7	Isentropic efficiency	R1
18	21.01.19	5	Multistage air compressor with Intercooling.	R1
19	22.01.19	6	Working principle and comparison of Rotary compressors	R1
20	23.01.19	7	Working principle and comparison of reciprocating compressors.	R1
21	24.01.19	1	Problems on efficiency	T1
22	28.01.19	5	Problems on Rotary compressors	T1
23	29.01.19	6	Problems on Reciprocating air compressors	<u>T1</u>
UNIT	III - INTE	RNAL	COMBUSTION ENGINES AND COMBUSTION Target	Periods :09
24	30.01.19	7	IC engine - Classification, working, components and their functions	<u>T1</u>
25	02.02.19	5	Ideal and actual : Valve and port timing diagrams	T1
26	04.02.19	5	p-v diagrams- two stroke & four stroke	T1
27	05.02.19	6	SI & CI engines comparison	T1
28	06.02.19	7	Geometric, operating, and performance comparison of SI and CI engines	T1
29	07.02.19	1	Desirable properties and qualities of fuels.	T1
30	09.02.19	6	Air-fuel ratio calculation	T1
31	11.02.19	5	lean and rich mixtures	R3
32	12.02.19	6	Combustion in SI & CI Engines	R3
33	13.02.19	7	Knocking	R3
34	14.02.19	1	phenomena and control	R2
35	16.02.19	5	Problems	R3
JNIT	IV - INTER	NAL	COMBUSTION ENGINE PERFORMANCE AND SYSTEMS Targe	t Periods :0
36	18.02.19	5	Performance parameters and calculations	12
37	19.02.19	6	Morse and Heat Balance tests	T2
38	20.02.19	7	Multipoint Fuel Injection system	T2
39	21.02.19	1	Common Rail Direct Injection systems	T2
40	23.02.19	6	Ignition systems	T2 T2
41	25.02.19	5	Magneto, Battery and Electronic	T2 T2
42	26.02.19	6	Lubrication and Cooling systems	2 July
43	27.02.19	7	Concepts of Supercharging and Turbocharging	R4
44	28.02.19	1	Emission Norms	R4
45	02.03.19	7	Problems	R4
JNIT	V – GAS TU	JRBIN		Periods:09
46	04.03.19	5	Gas turbine cycle analysis	<u>T2</u>
47	05.03.19	6	open and closed cycle	T2
48	06.03.19	7	Performance and its improvement	T2
49	07.03.19	1	Regenerative and their combinations	<u>T2</u>
	09.03.19	1	Intercooled and their combinations	<u>T2</u>
50		-	D. 1. (1. martin and their combinations	R5
	11.03.19	5	Reheated cycles and their combinations	R4

Dr. G. Balakrishnan, M.E., Pn.D., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

53	13.03.19	7	Materials for Turbines	R4
54	14.03.19	1	Problems	T1
			Content Beyond the Syllabus	iahing gang at a sa s
55	18.03.19	5	Recent Trends in Internal Combustion Engines	Material

Book Reference - Text Books

SI.	Title of the Book	Author	Publisher	Year
1.	A course in thermal Engineering	Kothandaraman.C.P., Domkundwar. S,Domkundwar. A.V.	Fifth Edition, Dhanpat Rai & sons	2016
2.	Thermal Engineering	Rajput. R. K.	S.Chand Publishers	2017

Book Reference – References

SI	Title of the Book	Author	Publisher	Year
1.	Refrigeration and Air Conditioning	Arora.C.P	Tata McGraw-Hill Publishers	2008
2.	Internal Combustion Engines	Ganesan V	Third Edition, Tata Mcgraw-Hill	2012
3.	Thermal Engineering	Ramalingam. K.K.	SCITECH Publications (India) Pvt. Ltd.	2009
4	Thermal Engineering	Rudramoorthy, R	Tata McGraw-Hill, New Delhi	2003
5	Thermal Engineering	Sarkar, B.K	Tata McGraw-Hill Publishers	2007

Website Reference:

https://onlinecourses.nptel.ac.in/noc23_me31/preview https://vardhaman.org/wp-content/uploads/2021/03/THERMAL-ENGINEERING-II-1.pdf https://www.thermal-engineering.org/

Signature of the Faculty in-charge

HoD nical

Dr. G. Balakrishman, M.E., Ph.D.,

Dr. G. BalakNSMan Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

INDRA GANESAN COLLEGE OF ENGINEERING

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF MECHANICAL ENGINEERING

Proof of Conduct of Content Beyond Syllabus(CBS)

Name of the Faculty : Mr.P.Venkatesan Course Code & Name: ME8493 Thermal Engineering I

Degree & Program: B.E. /Mechanical Semester: IV Academic Year: 2018-2019

TOPIC: RECENT TRENDS IN INTERNAL COMBUSTION ENGINES

INTRODUCTION:

Recent trends in internal combustion engines aim to reduce fuel consumption and also lower exhaust gas emissions. The aim of this special issue is to bring all topics and all the scientific/technological approaches in recent trends in internal combustion engines.

Easy fuel burning: Fuel is burned quicker and at lower temperatures, reducing heat energy loss compared to a conventional spark engine. Throttle less induction: Throttle less induction system eliminates frictional pumping losses incurred in traditional (throttle body) spark engines.

The Future of Internal Combustion Engine Design

- 1. CO₂ emissions restrictions
- 2. Engine efficiency for reducing those emissions
- 3. Diesel vs. traditional gas
- 4. EVs vs. ICE vehicles

1. Restrictions on CO₂ Emissions

<u>The Global Carbon Project reported</u> that worldwide carbon dioxide emissions were expected to rise by 4.9% in 2021, nearly back to their record 2019 levels. Emissions plummeted from 2019 to 2020 (5.4%) as the COVID pandemic brought travel to a near-standstill.

In August 2021, the U.S. Environmental Protection Agency (EPA) proposed revised <u>Greenbouse</u> <u>ClassEmissions</u> guidelines for passenger cars and trucks in model years 2023-2026. <u>The proposed</u> <u>standards</u> include 10% greater emissions improvement than current standards for MY 2023 vehicles and 5% greater emissions improvement in each of the following 3 years. Current standards only become 1.5% more stringent each year.

At the same time, EPA announced plans to reduce pollutants from heavy-duty trucks through stricter rules. The agency expects the new rules will apply to heavy-duty vehicles beginning in MY 2027.

Regardless of the EPA's plans, the **political and environmental atmosphere** is still pushing internal combustion engine efficiency improvements more than consumer demand is. Whether engineers and executives personally agree or not with the changes in the air, the industry is moving steadily in that direction.

2. How to Increase Efficiency of IC Engine Emissions?

The <u>Office of Energy Efficiency & Renewable Energy</u> reports that manufacturers reduced pollutant emissions by more than 99% over a 30-year span. Creative minds accomplished this while maintaining or increasing fuel economy.

In addition to gasoline and diesel, manufacturers are studying other ways to increase fuel economy:

Dr. G. Balakrishnan, M.E., Ph.D., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

- Using biodiesel
- Using other alternative or renewable fuels
- Combining IC engines with hybrid electric power trains

3. Diesel Engines vs. Traditional Gasoline Engines

When Europeans <u>switched front diesel to easoline costs</u>, there was a related increase in carbon dioxide emissions. In an unexpected twist, some of today's auto strategies are based around diesel engines.

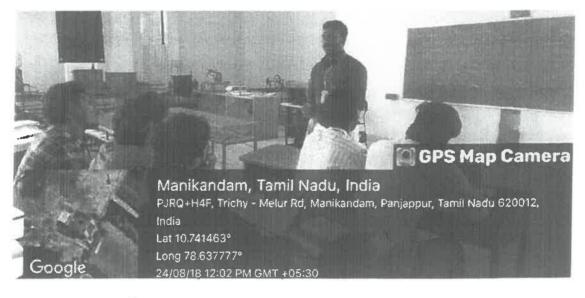
Many big diesel trucks <u>actually croate less CO2 emission</u> than some smaller, gas-powered vehicles, reports indicate. Increased technology has produced diesel-powered engines that can fuel smaller vehicles and provide:

- Better gas mileage
- Lower carbon emission rates
- Greater torque
- A longer-lasting engine

. Battery Electric Vehicles vs. Internal Combustion Engine Vehicles

You knew this was coming. Although <u>masoline-now grad oneines</u> don't appear to be completely disappearing, they do face stiff competition from their electric rivals.

Even BMW, whose beard member in charge of development colled auto electrification "overlyptic" in 2019, is signaling the beginning of the end. In October 2021, DM Manual need it would stop making internal combustion engines at one of its places (in Munich) by 2024. BMW is aiming for 50% of its new-car sales to be electric by 2030,


One thing IC engine supporters could always hang over the heads of the pro-electric crowd was the battery. Specifically, its:

- Size
- Cost
- Longevity
- Website Referencece:
- https://www.horizontechnology.biz/blog/future-of-internal-combustion-engine-design-trends

hnan, M.E., Ph.D., Dr. G. Balaki

Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

Signature of the Faculty in-charge

Hold Meenanical

Dr. G. Balakrishnan, M.E., Ph.D., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

INDRA GANESAN COLLEGE OF ENGINEERING

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF MECHANICAL ENGINEERING

Identification of Curricular Gap & Content Beyond Syllabus(CBS)

Name of the Faculty : Mr.P.Venkatesan Course Code & Name: ME 8493 Thermal Engineering I Degree & Program: B.E. /Mechanical Semester: IV Academic Year: 2018-2019 / EVEN

I.Mapping of Course Outcomes with POs & PSOs.(before CBS)

Course	PO1	PO2	PO3	PO4	POS	POA	PO7	DOR	DOO	ith POs	BOIN	DO10	BOOM	PSO2	
CO215.1	2	2			100	100	107	100	r0y	POIO	PUII	POIZ	PSOI	PSO2	PSO3
Man by Isoda (ag. Wernet	Э.	3	2	1	-	~	1	-	1	-	-	_	3	2	2
CO215.2	3	3	2	1		R-	1	-	1				2	2	2
CO215.3	3	3	2	1	-	-	1	-	1				3	2	2
CO215.4	3	3	2	1	-		1		1		-		3	2	2
CO215.5	3	3	2	1	1		1 1		1	- 1			3	2	2
CO215.6	3	2	2	1			1		1	-	-		3	2	2
- Historeeree		3	4	T I	- f	-	1	-	1	*	-	-	3	2	2
CO215	3	3	2	1	-	- 1	1	- 1	1	- 1	_		3	2	2

Table 1 84.

II. Identification of content beyond syllabus.

Table.2	Identification	of	content	beyond	syllabus	

Details of Content Beyond Syllabus(CBS) added	POs strengthened/ vacant filled	CO/Unit
Recent Trends in Internal Combustion Engines	PO7 strengthened	CO215.3 & CO215.4 III & IV

III. Mapping of Course Outcomes with POs & PSOs. (After CBS)

			Table	e.3 Ma	pping	of CC)s. C. (PSOs :	with P()s. afte	r CRS			
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
3	3	2	1			1		1				2	^	
3	3	2	1			1		1			-	3	2	2
3	3	2	1		-	*7	_	1	-		-	3	2	2
3	3	2	1			*7		1			-	3	4	2
3	3 1	2	1	-		1		1		-		3	2	4
3	3	2	1			1		1	-	-		3	2	2
3	3	2	1					1	-	-		3	2	2
	3	3 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PO1 PO2 PO3 PO4 PO5 3 3 2 1 $ 3$ 3 2 1 $ 3$ 3 2 1 $ 3$ 3 2 1 $ 3$ 3 2 1 $ 3$ 3 2 1 $ 3$ 3 2 1 $ 3$ 3 2 1 $-$	PO1 PO2 PO3 PO4 PO5 PO6 3 3 2 1 $ 3$ 3 2 1 $ 3$ 3 2 1 $ 3$ 3 2 1 $ 3$ 3 2 1 $ 3$ 3 2 1 $ 3$ 3 2 1 $ 3$ 3 2 1 $ 3$ 3 2 1 $ -$	PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 3 2 1 $ 1$ 3 3 2 1 $ 1$ 3 3 2 1 $ 1$ 3 3 2 1 $ *2$ 3 3 2 1 $ *2$ 3 3 2 1 $ 1$ 3 3 2 1 $ 1$ 3 3 2 1 $ 1$ 3 3 2 1 $ 1$	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 3 2 1 $ 1$ $ 3$ 3 2 1 $ 1$ $ 3$ 3 2 1 $ +2$ $ 3$ 3 2 1 $ +2$ $ 3$ 3 2 1 $ +2$ $ 3$ 3 2 1 $ 1$ $ 3$ 3 2 1 $ 1$ $ 3$ 3 2 1 $ 1$ $ 3$ 3 2 1 $ 1$ $-$	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 3 3 2 1 $ 1$ $ 1$ 3 3 2 1 $ 1$ $ 1$ 3 3 2 1 $ 1$ $ 1$ 3 3 2 1 $ 1$ $ 1$ 3 3 2 1 $ 1$ $ 1$ 3 3 2 1 $ 1$ $ 1$ 3 3 2 1 $ 1$ $ 1$ 3 3 2 1 $ 1$ $ 1$ 3 3 2 1 $ 1$ $ 1$	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 3 2 1 $ 1$ $ 1$ $ 1$ $ 3$ 3 2 1 $ 1$ $ 1$ $ 3$ 3 2 1 $ 2$ $ 1$ $ 3$ 3 2 1 $ 2$ $ 1$ $ 3$ 3 2 1 $ 2$ $ 1$ $ 3$ 3 2 1 $ 1$ $ 1$ $ 3$ 3 2 1 $ 1$ $ 1$ $ 1$ $ 1$ $ 1$ $ 1$ $ 1$ $ 1$ $ 1$ $ 1$ $ 1$ $-$ <td< td=""><td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 3 2 1 1 1 3 3 2 1 1 3 3 2 1 1 3 3 2 1 2 1 3 3 2 1 2 1 3 3 2 1 1 $-$ <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 3 3 2 1 - - 1 - - 3 2 3 3 2 1 - - 1 - - 3 2 3 3 2 1 - - 1 - - 3 2 3 3 2 1 - - 1 - - 3 2 3 3 2 1 - - *2 - 1 - - 3 2 3 3 2 1 - - 1 - - 3 2 3 3 2 1 - 1 - - 3 2 3 3 2 1 - 1 - - 3 2 3 3 2 1 -</td></t<></td></td<>	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 3 2 1 $ 1$ $ 1$ $ 3$ 3 2 1 $ 1$ $ 3$ 3 2 1 $ 1$ $ 3$ 3 2 1 $ 2$ $ 1$ $ 3$ 3 2 1 $ 2$ $ 1$ $ 3$ 3 2 1 $ 1$ $ -$ <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 3 3 2 1 - - 1 - - 3 2 3 3 2 1 - - 1 - - 3 2 3 3 2 1 - - 1 - - 3 2 3 3 2 1 - - 1 - - 3 2 3 3 2 1 - - *2 - 1 - - 3 2 3 3 2 1 - - 1 - - 3 2 3 3 2 1 - 1 - - 3 2 3 3 2 1 - 1 - - 3 2 3 3 2 1 -</td></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 3 3 2 1 - - 1 - - 3 2 3 3 2 1 - - 1 - - 3 2 3 3 2 1 - - 1 - - 3 2 3 3 2 1 - - 1 - - 3 2 3 3 2 1 - - *2 - 1 - - 3 2 3 3 2 1 - - 1 - - 3 2 3 3 2 1 - 1 - - 3 2 3 3 2 1 - 1 - - 3 2 3 3 2 1 -

Signature of the Faculty

HANICAL

Dr. G. Balakrishnan, M.E., Ph.D., **Principal** Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

INDRA GANESAN COLLEGE OF ENGINEERING IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF MECHANICAL ENGINEERING

Assignment Question Paper

••••••••••••••••••••••••••••••	Assignment	- 01	Date of Issue:	13.03.2019	Marks	10
Course code	ME8493	Course Title	Thermal Engineer	ing - I		
Year	D	Semester/Section	IV/A	Date of Submission		

Q.No	Questions	CO
1	A diesel engine operating an air standard diesel cycle has 20cm bore and 30cmstroke.the clearance volume is 420cm3.if the fuel is injected at 5% of the stroke,find the air standard efficiency.	C215.1
2	In an air standard dual cycle, the pressure and temperature at the beginning of the compression are 1 bar and 57oC respectively. The heat supplied in the cycle is 1250 kilo Joule/kg, two-third of this being added at constant volume and rest a constant pressure. If the compression ratio is 16, determine the maximum pressure and temperature in the cycle thermal efficiency and MEP.	C215.1

tre of the Faculty Incharge Name and Signa

Dr. G. Balakrishnan, M.E., Ph.D., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

5. E 1. S

INDRA GANESAN COLLEGE OF ENGINEERING

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF MECHANICAL ENGINEERING

Assignment Answer Sheet

Name of the Student : p. ponnar

AU Register Number: 8112 17114022

	A	A 01'	Date of Issue:	13.03.2019	Marks 10	
Course ande	Assignment ME8493	Course Title	Thermal Engineer		10.00010	
Course code		Semester/Section	IV/A	Date of Submission:	ion: 18.3.2019	
Year	II	Demester/Dection				

Q.No	Questions	CO
1	A diesel engine operating an air standard diesel cycle has 20cm bore and 30cmstroke.the clearance volume is 420cm3.if the fuel is injected at 5% of the stroke,find the air standard efficiency.	C215.1
2		l

Mark Allocation

Rubrics	Marks Allocated	Marks obtained
Content Quality	6	5
Presentation Quality	2	2
Timely submission	2	2
Total marks	10	9

P. VENGATESAN

Name and Signature of the Faculty Incharge

Dr. G. Balakrishnan, M.E., Ph.D., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

. .

IGCE/EXAMCELL/IA/MECH/2018-19/Even/UT/001

INTERNAL ASSESSMENT TEST - I

	Time: (FN) 1	1.30 am to	1.00 pm		AN) 3.301	om to 5.00	pm 1.2819
BRANCH	YEAR/	FN	AN	FN	AN	FN	AN
DIGLICIA	U	MA8452	ME8492	ME8451	ME8491	CE8395	ME8493
	TO	ME6601	MG6851	ME6602	ME6603	ME6604	ME6004
MECH	TV	MG6863	IE6605	ME6016	-4-99979681 - 4-6 83 81 44 85 4 - 4-68 4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		

PRINCIPAL

Copy To:

- 1. The Director for favor of kind information
- 2. The Principal (file copy)
- 3. All HoDs :request to circulate among their faculty members
- 4. Exam cell file
- 5. Notice Board (Lab Block)

Dr. G. Balakrisbnan, M.E., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

INDRA GANESAN COLLEGE OF ENGINEERING

IG Valley, Manikandam, Tiruchirappalii, Tamit Nadu – 622 012, India (Approved by AICTE, New Delhi and affiliated to Anna University, Chennai)

Machanin
Model
e)S

Internal Assessment Test Answer Book

P	art A	_	Put tick mark to the question attended in the colum					
Q. No.	Marks	Q. NO.	1	8	1	b	Total Marks	
				Marks		Marks	1	
1	2	11				i	1	
2	2	12		06		10	10	
3	1	13	1	08	1		06	
4)	14					08	
5	2	15			+			
6	1	16			+			
7	1	I.		1		Total	_	
8		Gran	d Tol	tal	P	Name and S	24 Vanatura	
9				1 t	-0E fl	DO EVANIA	ALX N. /	
10	7_	(38)	1	16 -	1	en kater		
Fotal	14	50	1	00 /	·		5/1/2.019	

	y	To be f	illed by the	examiner			
Course Outcomes	1	2	3	A	1	1	1
Marks allotted	50		1	7	2	6	Total
Marks Obtained	38						50
And Disk of the	IOAC	Audit - Re	marko			4	38
						of the IQA	I Signature C member
	IA.	. /		n narindaram kaparingkar - a	ander off an open of a state of a		

Dr. G. Balakrishnan, M.B., Ph.D., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-655 110

Scanned with CamScanner

INDRA GANESAN COLLEGE OF ENGINEERING IG VALLEY, MANIDANDAM, TIRUCHIRAPPALLI – 620 012 DEPARTMENT OF MECHANICAL ENGINEERING ACADEMIC YEAR 2018 - 2019 (EVEN SEMESTER) STUDENTS MARK STATEMENT- CO BASED INTERNAL ASSESSMENT TEST - I SUBJECT CODE & TITLE: ME 8493-THERMAL ENGINEERING - I

YEAR/SEM: II/IV

MONTH & YEAR: JAN & 2019

S.NO	REG NO	STUDENT NAME	M	lark	s All	loted		X	Ma	arks	Obt	аіпе	d CO	OY	(100)
	041/04/46	1	CO 1	CU 2	CO 3	CU 4	CO 5	C0 6	CO 1	C0 1	C0 3	CU 4	C0 5	CO 6	
1	811217114001	S.Abdul Yasin	50	-	-	-		-	31	-	-	-	-	-	62
	811217114001	R.Ajithkumar	50	-	-				28	-		-	-	-	56
2	811217114002	S.Anandha Kumar	50		-	-	-	-	34	-	-	-	-	-	68
3	V	M.Ananth	50					-	18	-	-	-	-	-	36
4	811217114004	R.Chellaiah	50				_		41		-	-	-		82
5	811217114005		50		-				26		-	-	-	-	52
6	811217114006	C.Devarajan	50		-	-	-		42				-	-	84
7	811217114007	S.Dhamotharan	50	-	-	•		-	38				_	h	76
8	811217114008	A.Dhanussh	50	•			•	-	33	-		5	-		66
9	811217114009	C.Dharanidharan	50	-	-	-	-	-	14	-			-		28
10	811217114010	N.Dharman		-	-		-	-	29	-		-			58
11	811217114013	M.Hariharasudhan	50	-	-	•	-	-	33	-	-	-			66
12	811217114014	A.Jawagar	50	-		-	-	-		-		-	-	-	24
13	811217114015	Karthick S	50	-	-	-	-	-	12	-	•	-	-	-	58
14	811217114016	D.Madhan	50	-	-	-	-	-	29	-	-	-	-	-	92
15	811217114018	M.Mohammed Faizal	50	-	-	1	-	-	46	-	-	-	-	-	74
16	811217114019	S.Mohanraj	50	-	-	-	÷	-	37	-	-	-	-	-	
17	811217114020	R.Munishwaran	50		-	-	-	-	31	-	-	-	-	-	62
18	811217114021	P.Murugan	50		-	-	-	-	Ā	-	-	-	-	-	A
19	811217114022	P.Ponnar	50	-	-	-	-	-	38	-	-	- 1	-	-	76
20	811217114023	M.Prakash	50	-	-	-			42			-		- 1	84
	811217114025	M.Rajamuni	50			-	-	-	17	-	-	-		-	34
21	811217114025	La.Ramanathan	50	2 1 2 2	-		-		22	-	-		-	-	44
22		G.Sairam	50	-	-	-		-	37			-	-		74
23	811217114027		50	-				3 	33		-		-		66
24	811217114028	R.Sankaralingam		-		-	-				1			de ene	L

Dr. G. Balakrishnan, M.E., Ph.D.,

Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Rose Manikandam, Trichy-620 032

25	811217114030	M.Selvakumar	50	-	-		-		16	1 -	-	-	-	-	38
26	811217114031	A.Shameer	50	-	-	-	-		40	-	-	-		-	80
27	811217114032	D.Sivakumar	50		-		-	•	33	-	-		-	-	66
28	811217114033	A.Sriram	50	-	-	-	-		41		-	1 -		-	82
29	811217114034	S.Thirumurugan	50	-	-	-	-		29	-	+		-	-	58
30	811217114035	A.Vengatesh	50		-		-		45	-		-			90
31	811217114036	M.Venkatesh	50	-	-	-	-	-	12		-	-		-	24
32	811217114037	P.Vinayagamoorthy	50	-	-		-	- 1	39	-		-	-	-	78
33	811217114038	B.Vinothraja	50	-	-	-	-	-	33			-		-	66
34	811217114039	D.Yugesh	50	-	-	•	-	-	37	-	-	•	-	-	74
35	811217114301	K.Arun	50	-	-	-	-		19	-	-		-	-	38
36	811217114302	K.Santhosh Kumar	50	-	-	-	-		35	-	-	-	-	-	70
37	811217114303	R.Thirumoorthi	50	-	-	-	-	-	44	-	-	-	-	_ (88
38	811217114012	R.Hariharan	50	-	-	-	~	-	31	-	-	-	-	-	62
39	811217114029	C.Sarathkumar	50	-		-		-	Α	-		-	-	-	Α

MARKS RANGE:

.

<20	20-30	31-40	41-50	51-60	61-70	71-80	81-90	91-100
0	3	4	1	5	10	7	6	1

Total No.of Candidates Present	37
Total No.of Candidates Absent	02
Total No.of Students Pass	29
Total No. of Students Fail	8
Percentage of Pass	78.4%

STAFF INCHARGE

нармеен

PRINCIPAL

Dr. G Balakrishnan, M.E., Ph.D.,

Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

IGCE/EXAMCELL/IA/MECH/2018-19/Even/UT/002

INTERNAL ASSESSMENT RE TEST – I

Test	Time: (FN) 1	1.30 am to	1.00 pm	- (4	AN) 3.30	om to 5.00	pm	
DATE	YEAR/	07.8	1.2019	08.0	1.2019	09,01,2619		
BRANCH	SESSION	FN	AN	FN	AN	EN	AN	
	H. H.	MA8452	ME8492	ME8451	ME8491	CE8395	ME8493	
	10	ME6601	MG6851	ME6602	ME6603	ME6604	ME6004	
MECH	IV	MG6863	IE6605	ME6016		10-407 00 ⁷ 777 8 ¹⁰ 10 10 10 10 10		

OØRDINATOR EXAM(CE

PRINCIPAL

Copy To:

- 1. The Director for favor of kind information
- 2. The Principal (file copy)
- 3. All HoDs :request to circulate among their faculty members
- 4. Exam cell file
- 5. Notice Board (Lab Block)

Dr. G. Balakrishnan, M.E., Ph.D., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Roady Manikandam, Trichy-620 012.

IGCE/EXAMCELL/IA/MECH/2019-#0/Even/UT/005

MODEL TEST - I

Test Time: (AN) 2.00 pm to 5.00 pm

DATE	YEAR /	11.03,19	12.03.19	13.03.19	14.03.19	15.03.19	16.03.19
BRANCH	SESSION	AN	AN	AN	AN	AN	AN
	H.H.	MA8353	ME8391	CE8394	ME8351	EE8353	-
	10	ME8595	ME8593	ME8501	ME8594	ME8691	-
MECH	d' Re-	ME6701	ME6702	ME6703	GE6757	ME6005	ME6012

EXAMCEL CO ORDINATOR

PRINCIPAL

Copy To:

- 1. The Director for favor of kind information
- 2. The Principal (file copy)
- 3. All HoDs :request to circulate among their faculty members
- 4. Exam cell file
- 5. Notice Board (Lab Block)

Dr. G. Balakrishnan, M.E., Ph.D., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

IGCE/EXAMCELL/IA/MECH/2018-19/Even/UT/002

INTERNAL ASSESSMENT TEST – II

Test Time: (FN) 11.30 am to 1.00 pm

(AN) 3.30 pm to 5.00 pm

DATE	VEAR/	20.0	2.2019	21.0	2.2019	22.8	2.2019
BRANCH	SESSION	FN	AN	FN	AN	FN	AN
	III III	MA8452	ME8492	ME8451	ME8491	CE8395	ME8493
	m	ME6601	MG6851	ME6602	ME6603	ME6604	ME6004
MECH	ÏV	MG6863	IE6605	ME6016			

Ordinator Exa

Copy To:

- 1. The Director for favor of kind information
- The Principal (file copy)
 All HoDs :request to circulate among their faculty members
 Exam cell file
- 5. Notice Board (Lab Block)

Dr. G. Balakrishnan, M.E., Ph.D., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Roed Manikandara Trichy-620 m

IGCE/EXAMCELL/IA/MECH/2018-19/Even/UT/004

....

INTERNAL ASSESSMENT RE TEST - II

Test Time: (FN) 11.30 am to 1.00 pm

(AN) 3.30 pm to 5.00 pm

DATE	YEAR/	27.1	27.02.2019		12.2019	01.03.2019		
BRANCH	SESSION	EN	AN	FN	AN	RIN	AN	
	E ST	MA8452	ME8492	ME8451	ME8491	CE8395	ME8493	
	111	ME6601	MG6851	ME6602	ME6603	ME6604	ME6004	
MECH	IV	MG6863	IE6605	ME6016				

Ördinator Exam

Principal

Copy To:

- 1. The Director for favor of kind information
- 2. The Principal (file copy)
- 3. All HoDs :request to circulate among their faculty members
- 4. Exam cell file
- 5. Notice Board (Lab Block)

Dr. G. Balakrishnan, M.E., Ph.D., Principal Indra Ganesan College of Engineer IG Valley, Madurai Main Por-Manist

IGCE/EXAMCELL/IA/MECH/2019-20/Even/UT/006

MODEL RE TEST - I

Test Time: (AN) 2.00 pm to 5.00 pm

DATE	YEAR/	18.03.19	19.03.19	20,03,19	21.03.19	22.03.19	23.03.19
BRANCH	SESSION	AN	AN	AN	AN	AN	AN
	and the second	MA8353	ME8391	CE8394	ME8351	EE8353	-
	TU	ME8595	ME8593	ME8501	ME8594	ME8691	
MECH	EW	ME6701	ME6702	ME6703	GE6757	ME6005	ME6012

PRINCIPAL

Copy To:

- 1. The Director for favor of kind information
- 2. The Principal (file copy)
- 3. All HoDs :request to circulate among their faculty members
- 4. Exam cell file
- 5. Notice Board (Lab Block)

Dr. G. Balakrishnan, M.E., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

Register Number:

INDRA GANESAN COLLEGE OF ENGINEERING

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi and affiliated to Anna University, Chennai)

uterity and a	Internal Assessm	ent Exam – 1	Date	03/01/2019	Marks	50
Course o	code ME 8493	Course Title	Thermal Engin	neering I	a 14 8466 99999 -	
Regulati	on .2017	Duration	90 minutes	Academic Y	'ear 2018	-19
Year	Π	Semester	IV	Department	Mec	hanical Engg
COURS	E OUTCOMES					
CO1:	Apply thermodynamic	concepts to different air sta	indard cycles and solve	e problems.		*******
CO2:	Solve problems in sing	le stage and multistage air o	compressors		We decided the gapper of the second states and a	
CO3:		and features of IC engines		iliaries.		
CO4:	Calculate performance	parameters of IC Engines.		NING 2010 1111 1111 1111		
CO5:		s turbines and solve problem	ns	- dóterreynd		
CO6:	Acknowledged the enrartificial Intelligence to	iched knowledge about the	advanced technologie	es which adopt in re	al-time in Indu	ıstry, applyin

PART A (Answer all the Questions 10 x 2 = 20 Marks) For a given compression ratio Otto cycle is more efficient than Diesel cycle. Justify (Nov 2013) What is mean by mean effective pressure? (Nov 2013,14,16,17) Mention the ranges of compression ratio for SI and CI engine. (May 2013) What is meant by Air standard efficiency? (Apr/May 2014,17) Define compression ratio and cut off ratio. (May 2014) Draw the actual PV diagram of two stroke engine. (Nov 2014) Draw the Brayton cycle on p-v and T-s diagram. (May 2015,17) Differentiate any three major differences between Otto and diesel cycle. (Nov 2015,16) What are the assumption made in the air standard cycle? (May 2015,16/Nov 2016)	CO1 CO1 CO1 CO1 CO1 CO1 CO1 CO1	K4
For a given compression ratio Otto cycle is more efficient than Diesel cycle. Justify (Nov 2013) What is mean by mean effective pressure? (Nov 2013,14,16,17) Mention the ranges of compression ratio for SI and CI engine. (May 2013) What is meant by Air standard efficiency? (Apr/May 2014,17) Define compression ratio and cut off ratio. (May 2014) Draw the actual PV diagram of two stroke engine. (Nov 2014) Draw the Brayton cycle on p-v and T-s diagram. (May 2015,17) Differentiate any three major differences between Otto and diesel cycle. (Nov 2015,16)	CO1 CO1 CO1 CO1 CO1 CO1	<u>K4</u>
What is mean by mean effective pressure? (Nov 2013,14,16,17) Mention the ranges of compression ratio for SI and CI engine. (May 2013) What is meant by Air standard efficiency? (Apr/May 2014,17) Define compression ratio and cut off ratio. (May 2014) Draw the actual PV diagram of two stroke engine. (Nov 2014) Draw the Brayton cycle on p-v and T-s diagram. (May 2015,17) Differentiate any three major differences between Otto and diesel cycle. (Nov 2015,16)	CO1 CO1 CO1 CO1 CO1 CO1	<u>K4</u>
Mention the ranges of compression ratio for SI and CI engine. (May 2013) What is meant by Air standard efficiency? (Apr/May 2014,17) Define compression ratio and cut off ratio. (May 2014) Draw the actual PV diagram of two stroke engine. (Nov 2014) Draw the Brayton cycle on p-v and T-s diagram. (May 2015,17) Differentiate any three major differences between Otto and diesel cycle. (Nov 2015,16)	CO1 CO1 CO1 CO1 CO1	
What is meant by Air standard efficiency? (Apr/May 2014,17) Define compression ratio and cut off ratio. (May 2014) Draw the actual PV diagram of two stroke engine. (Nov 2014) Draw the Brayton cycle on p-v and T-s diagram. (May 2015,17) Differentiate any three major differences between Otto and diesel cycle. (Nov 2015,16)	CO1 CO1 CO1 CO1	
Define compression ratio and cut off ratio. (May 2014) Draw the actual PV diagram of two stroke engine. (Nov 2014) Draw the Brayton cycle on p-v and T-s diagram. (May 2015,17) Differentiate any three major differences between Otto and diesel cycle. (Nov 2015,16)	CO1 CO1 CO1	
Draw the actual PV diagram of two stroke engine. (Nov 2014) Draw the Brayton cycle on p-v and T-s diagram. (May 2015,17) Differentiate any three major differences between Otto and diesel cycle. (Nov 2015,16)	CO1 CO1	
Draw the Brayton cycle on p-v and T-s diagram. (May 2015,17) Differentiate any three major differences between Otto and diesel cycle. (Nov 2015,16)	CO1 CO1	
Differentiate any three major differences between Otto and diesel cycle. (Nov 2015.16)	COI	
Differentiate any three major differences between Otto and diesel cycle. (Nov 2015,16)		1
What are the assumption made in the air standard cycle? (May 2015 16/Nov 2016)	COI	K4
and and anothing work interes in and the odd and overes (1916) 2010,10/1909 2010;	COI	
What are the effects of Introducing regeneration in the basic gas turbine cycle?	and an and a second	
PART B	milion in	-
(Answer all the Questions $2 \ge 10 = 20$ Marks)		
Derive an expression for air standard efficiency and mean effective pressure of Otto cycle. (May/June 2013)	CO1	K4
OR	1.00	4
it operates on a four stroke constant volume cycle and the indicated efficiency ratio referred to air std.	CO1	
is 44000 kJ/kg. Determine the average indicated mean effective pressure	2	
Derive an expression for air standard efficiency and mean effective pressure of Diesel cycle. (May/June 2013)	CO1	K4
OR	£	
Air enters a Brayton cycle at 100 kPa, 300K. The compressive ratio is 8:1. The maximum temperature in the cycle is 1300K. Find, 1. Air standard efficiency, 2. Compressor and turbine work and 3. Work ratio. Nov 2014)	CO1	
PART C	Lat	
(Answer all the Questions $1 \ge 10$ Marks)		
Derive an expression for air standard efficiency and mean effective pressure of Dual cycle. (May/June 2014)	C01	K4
OR		
An air std. DUAL cycle has a compression ratio of 16 and compression begins at 1 bar and 50°C. The maximum pressure is 70 bar. The heat transferred to air at constant pressure is equal to heat transferred at constant volume. Find the temperature at a cardinal point, cycle efficiency and mean effective pressure.	COI	
	PART B (Answer all the Questions 2 x 10 = 20 Marks) Derive an expression for air standard efficiency and mean effective pressure of Otto cycle. (May/June OR A six cylinder petrol engine has a compression ratio 5%. The clearance volume of each cylinder is 110 cc. it operates on a four stroke constant volume cycle and the indicated efficiency ratio referred to air std. efficiency is 0.56 at the speed of 2400 rpm. It consumes 10 kg of fuel per hour. The calorific value of fuel is 44000 kJ/kg. Determine the average indicated mean effective pressure. Derive an expression for air standard efficiency and mean effective pressure of Diesel cycle. (May/June OR Air enters a Brayton cycle at 100 kPa, 300K. The compressive ratio is 8:1. The maximum temperature in the cycle is 1300K. Find, 1. Air standard efficiency, 2. Compressor and turbine work and 3. Work ratio. Nov 2014) PART C (Answer all the Questions 1 x 10 = 10 Marks) Derive an expression for air standard efficiency and mean effective pressure of Dual cycle. (May/June OR N air std. DUAL cycle has a compression ratio of 16 and compression begins at 1 bar and 50°C. The taximum pressure is 70 bar. The heat transferred to air at constant pressure is could to heat transferred at	PART B (Answer all the Questions 2 x 10 = 20 Marks) Derive an expression for air standard efficiency and mean effective pressure of Otto cycle. (May/June CO1 OR A six cylinder petrol engine has a compression ratio 5%. The clearance volume of each cylinder is 110 cc. it operates on a four stroke constant volume cycle and the indicated efficiency ratio referred to air std. efficiency is 0.56 at the speed of 2400 rpm. It consumes 10 kg of fuel per hour. The calorific value of fuel is 44000 kJ/kµ. Determine the average indicated mean effective pressure. Derive an expression for air standard efficiency and mean effective pressure of Diesel cycle. (May/June CO1 OR Air enters a Brayton cycle at 100 kPa, 300K. The compressive ratio is 8:1. The maximum temperature in the cycle is 1300K. Find, 1. Air standard efficiency, 2. Compressor and turbine work and 3. Work ratio. Nov 2014) PART C (Answer all the Questions 1 x 10 = 10 Marks) Derive an expression for air standard efficiency and mean effective pressure of Dual cycle. (May/June OR N air std. DUAL cycle has a compression ratio of 16 and compression begins at 1 bar and 50°C. The animum pressure is 70 bar. The heat transferred to air at constant pressure is equal to heat transferred at onstant volume. Find the temperature at a cardinal point, cycle efficiency and mean effective pressure.

Mr.P.Venkatesan : Course Faculty

(Name/Sign/Date)

Dr. G. Balakrishnan, M.E., Ph.D., Principal

(Name /Sign / Date)

Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

Register Number:

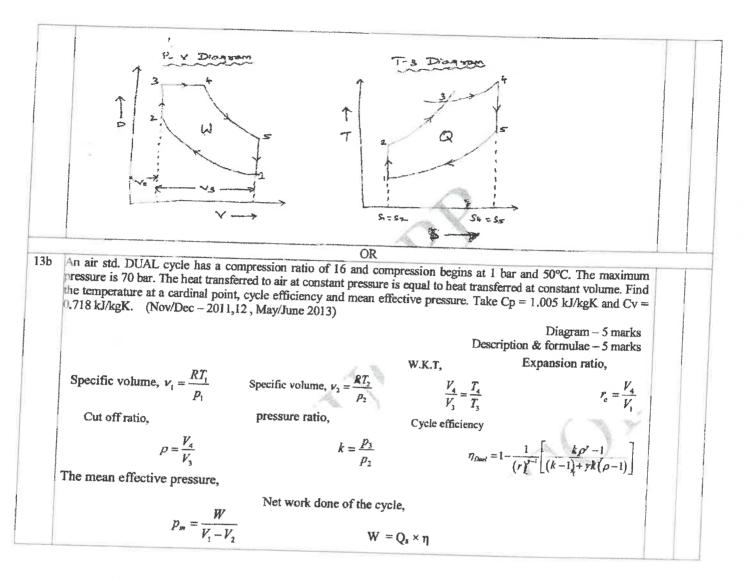
INDRA GANESAN COLLEGE OF ENGINEERING

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi and affiliated to Anna University, Chennai)

	Internal As	essment Ex	um – 1 Key Notes	Date	1	/larks	50				
Course code ME 8493 Course				Thermal Engineering I							
Regulati		7	Duration	90 minutes	Academic Year	2018-	19				
Year	п		Semester	IV	Department	Mech	lechanical Engg				
COURS	E OUTCOME	S	And the second se				NI 501621627,				
CO1:			concepts to different air sta		problems.						
CO2:	Solve prob	lems in singl	e stage and multistage air	compressors	******						
CO3:	Explain the	functioning	and features of IC engines	s, components and auxil	iaries.						
CO4:	Calculate p	erformance	arameters of IC Engines.			and a state of the					
CO5:	Explain the	flow in Gas	turbines and solve problem	ns			4.3				
CO6:		lged the enri telligence to	ched knowledge about the this systems.	e advanced technologie	s which adopt in real-t	ime in Indu	stry, applyin				

).No.	Question	CO	BT
	PART A		
	(Answer all the Questions $10 \ge 20$ Marks)	COL	K4
1	For a given compression ratio Otto cycle is more efficient than Diesel cycle. Justify (Nov 2013) Ans: Area under P-V diagram is more that the diesel cycle. When the area is more, workdone	COL	N 4
	for that cycle is more. So, the efficiency for otto cycle will be higher than diesel cycle.		-
2	What is mean by mean effective pressure? (Nov 2013,14,16,17) Ans: It is hypothetical pressure which is acting on the piston during the power stroke. Mean effective pressure = workdone /stroke volume	COI	remanufacture du cardo de
3	Mention the ranges of compression ratio for SI and CI engine. (May 2013) Ans: SI engine 6-10 CI engine 16-20	COL	
4	What is meant by Air standard efficiency? (Apr/May 2014,17) Ans: It is defined as the ratio of work done by the cycle to the heat supplied to the cycle.	CO1	
5	Define compression ratio and cut off ratio. (May 2014) Ans: It is defined as the ratio between total cylinder volumes to the clearance volume. Cut off ratio: It is defined as the ratio of volume after the heat addition to volume before the heat addition.	COL	
6	Draw the actual PV diagram of two stroke engine. (Nov 2014) Ans:	COI	
		COI	
7	Draw the Brayton cycle on p-v and T-s diagram. (May 2015,17) Dr. G. Balakrishnan, M.E., Ph.D.		1
	Principal	la.	
	Indra Ganesan College of Engineering	1	

Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

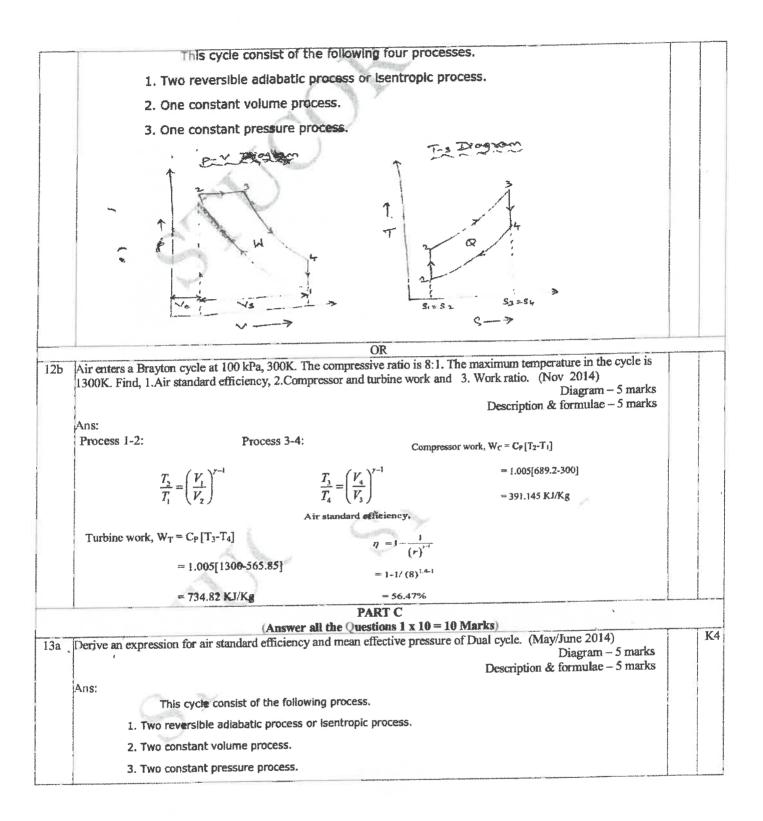

This cycle consist of the following four processes.	
1. Two reversible adiabatic process or isentropic process.	The shows be
2. Two constant volume process.	
The Program The program	a series a s
Process 1-2: Y_a Y_b $Y_$	ra - ra marka - ra
	And a second sec
1. Process 1-2 is the isentropic compression process.	
2. Pressure increases from P_1 to P_2 and temperature increases from T_1 to T_2 .	n sain - na sain sain sain sa
3. Volume decreases from V_1 to V_2 .	
4. Entropy remains constant.	Transition of the state of the
OR	darman and an a
A six cylinder petrol engine has a compression ratio 5%. The clearance volume of each cylinder is 110 cc. it operates on a four stroke constant volume cycle and the indicated efficiency ratio referred to air std. efficiency is 0.56 at the speed of 2400 rpm. It consumes 10 kg of fuel per hour. The calorific value of fuel is 44000 kJ/kg. Determine the average indicated mean effective pressure. Diagram – 5 marks Description & formulae – 5 marks	
Compression ratio. Air standard efficiency,	
$r = \frac{V_s + V_c}{V_c}$ $\eta = 1 - \frac{1}{r^{\gamma-1}}$ Actual efficiency $= \frac{Work \ done}{Heat \ input}$	
	4484 che set a
Net work output, $W = \frac{p_w V_s NZ}{N}$	
Net work output, $W = \frac{p_{w}V_s NZ}{60}$	K
Net work output,	K

Dr. G. Balakrishnan, M.E., Ph.D., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road

	Ans:	anna ann an a			
"	: SE LOT	q in 3 1 4 q in 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	q out	· · · · · · · · · · · · · · · · · · ·	er den son ander en
8		any three major differences between Otto an	nd diesel cycle. (Nov 2015,16)	CO1	K4
i I	Ans:	Otto cycle	Diesel cycle		1
	1	Efficiency is less due to low compression ratio	Efficiency is more due to low compression ratio		
A defendence of the second secon	2	Fuel is admitted into the cylinder during suction stroke	Air alone is admitted in to the cylinder during suction stroke	and a second second	an a
-	3	Spark ignition system is used for ignition.	Compression ignition system is used for ignition.		opp reserves a province of the second s
9	Ans: The wo The wo Kinetic	assumption made in the air standard cycle? (rk medium is a perfect gas throughout, rking medium does not undergo chemical of and potential energies of the working fluid eration of the engine is frictionless	change through the cycle.	COI	
10	What are the Ans: • The fuel air is less. • The work change. • Pressure	effects of Introducing regeneration in the bas economy is improved the quantity of the fue coutput from the turbine, work required to the drop will occur during regeneration.	l required per unit mass of ne compressor will not	CO1	
	• It increase	es the thermal efficiency when the low press		_	
			ART B estions 2 x 10 = 20 Marks)		
lla	Derive an exp	ression for air standard efficiency and mean	effective pressure of Otto cycle. (May/June 2013) Diagram – 5 marks Description & formulae – 5 marks		K4
	Ans:		an		

Dr. G. Balakrishnan, M.E., Ph.D., Principal

Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.


Mrd **Course Faculty**

(Name /Sign / Date)

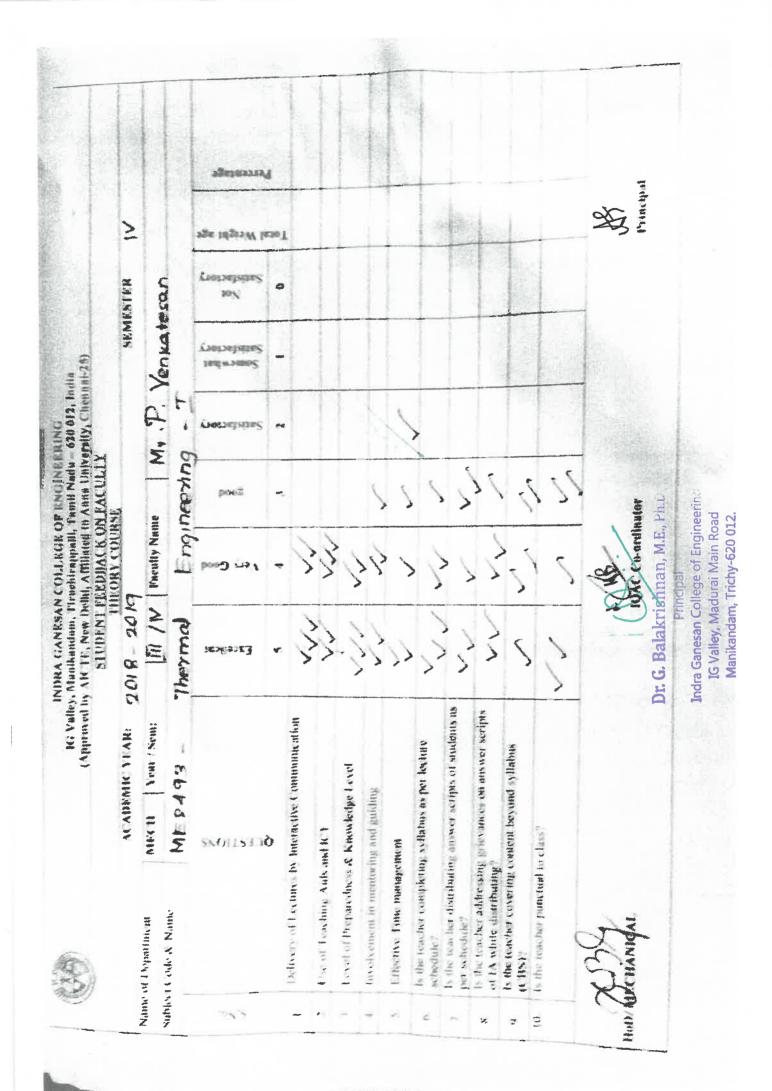
(Name /Sign / Date)

Dr. G. Balakrishnan, M.E., Ph.D

Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

Dr. G. Balakrishnan, M.E., Ph.D., Principal Indra Ganesan College of Engineering To Vellow Medural Main Road

Signalu		10 %	-		ı ç		n i	A .	~ i	1	S.NO	Name of the Faculty : My Degree & Program : By LA Test : TA Target : 9	(Apj
Signatur of the Faculty Member	1	1	43 01	36	30	26	25	15	10	8112 1711404	ROLL NO	Mr. P.Venkatesan B.E [Mechanica] I.A. Test -1 95 1.	INDR IG V DEP
	G	7	K. Arun	M. Venkated	M. Selvakumar	La. Raman athan	M. Rajamuna	Karthick's	N. Dharman	3	NAME OF THE STUDENT		A GANESAN Alley, Manikandam, AICTE, New Del ARTMENT OF
Dr. G. Balakrishnan, M. Principal Indra Ganesan College of Engineen	A	- former 14 function	2	Consto. Osner	1	He	-	Health inco	Health Sur	Attended frite	CAUSES FOR	ROOT CAUSE ANALYSIS Course Code & Name : Semester : 1V University Exam/Month	INDRA GANESAN COLLEGE OF ENGINEERING IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu - 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Cho DEPARTMENT OF MECHANICAL ENGINEERING
£	/	r .				22	77		Retet industry	A	CORRECTIVE	IIS k Name : ME 84 : 1V m/Month & Year: N	^r ENGINEERING ^{Nadu – 620 012, India} Inna University, Chennai-25) ENGINEERING
Signature of the Hop-Mechanical	1	fan y Laching	chuser too wit	Care of bant	tom we fulk	it is			KA A A Charles	CTION	V.	E ANALYSIS Course Code & Name : ME 84 93 - Thermal Engineering T Semester : 1V University Exam/Month & Year: MAY June 2019	JING ^{Jia} Y, Chennai-25) VG


Nan	e of Departi		ACADEMIC	C Acade	mic Au	idit even	For SEN	m MES			39
Deta	uils of Exami	mation	IA Test -1	Correcting Book Variation (Y / N)	Course File Verified (Y / K)	1	P 41	fo d Faters	ž	j	
1	ME 8493	8112	17)14001	γ γ	y y	39	·温 · 2		78	-	
72		8112	1711 4002	۲	Ч						
3		811	217114003	Y	y						
4		8))2	1711404	Y	4						
5	الم الم	811:	217114005	У	Y		2				
6		8112	217114006	Y	Y		3				12-19 (1-1)
7		8112	17114007	У	Y		5				
8		8112	17114008	Y	Y		20		3		
9		811	217114009	y	Y						
JB		811	21711 4010	Y	X	1000	LAN P	1.6			
H		811	217114013	X	y Y	199	1				

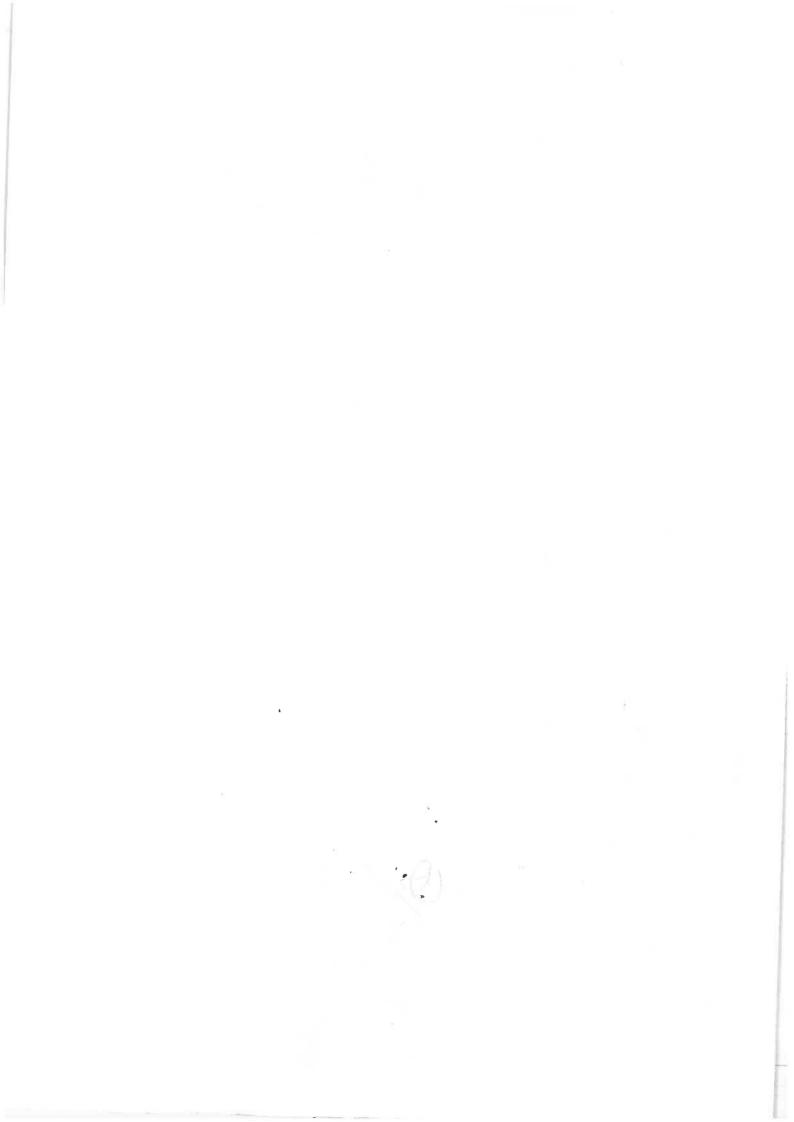
Indra Ganesan College of Engineering 10 Velley, Manurai Main Road Manikandam, Trichy-620 012.

12	811217114014	Y	4					-	
13	811217114015	Y	V					-	
14	811217114016	ý	1						
15	811217114018	y	Y						
6	811217114019								
7	811217114020		X			1			CE.
8	811217114021	V	X						
9	811217114022	V	X						
0	811217114023		X						
21	81127114025	<u>y</u>	X						
2	81127114026	1	X						
3		<u>/</u>	<u> </u> <u>Y</u>		*• 				
4	8127114027	<u> </u>	Y						
5	8127114028	<u> </u>	Y						
B	81127114030	X	Y	*					
	81127 114031	Y	Y		No. 10	L. S.			
	8112711 4032	Y	X		1	1000			
		Da	6. Batti	qishi	nan,	ME	Ph.D.	1	

Manikandam, Trichy-620 012.

THE CONTRACT OF THE OWNER		1			
81121714033	Y	Y			
81121711 4034	Y	Y			
811217114035	У	Y			
31 81217114036	У	Y			
8121711 4037	у	Y			
33 8121711 4038	У	y y			
81217114039	У	Y			
5 8112711 4301	γ	Y			
81127114302	Y	Y			
81127114303	X	Y			
8 1127114012	X	Y			
81127114029	y	Y			
				Bit	-
stormal Member Name and Signature:	Ver			rishnan, M. Principal College of En	gincering
sternal Member Name and Signature:			IG Velley. Mankaod	No cural Main Iam, Trichy-62	0.612

Mankandam, Trichy-620.012 Beog nisM lerubsM yellev DI Indra Ganesan College of Engineering Principal Dr. G. Balakrishnan, M.E. Pull, J. B. S. S. 大学 1211 - 2 The states of and ster et dette se 1 States 10 . . . Principal IQAC Co-ordinator H HOD WECHVAICAL 1 1 C 2 3 Overall Remarks


ubject (d Department Code & Name Delivery of Lecture by	SHOL	Y CO 2018 - 11	19 19	SEN	1ESTER Name	V My P contructors cartelactory controloce	Not Satisfactory
ubject (Code & Name	MECH YEAR: S MECH Year Sem: ME 8993. The	- 8100	Very Boot 200	Stev Faculty Stude A Nome	Vame T A P Cappender	Somewhat Santerick	Not Setisfactory
ubject (Code & Name	ME 8993. The	Excellent	Very Good The	NOME	Satisfactory W	Somewhat Samewhat Satisfactory	Not Setisfactory
SNa		SHOL			pend	Satisfactory	Somewhat Satisfactory	Not Satisfactory
i b	Delivery of Lecture - b;							
i b	Delivery of Lecture by				3	2		
	Delivery of Lecture by	Interactive Communication				2	1	D
7 1/			/					
5 a	se of Teaching Auls :	ad 1C 1	1	1			1	
3. 1	Level of Preparedness &	Knowledge Level	2					
j h	involvement in mentor	ny and gu dine		1	.			
4 F	Effective Time manage	(ac'nt		~			مەجىيىرىك	
6	Is the teacher completing	ng syllabus as per lecture schedule.	2					
" h	is the teacher distributi schedule?	ng answer scripts of students as per	+	1		ويتقاوم والقارية المسرجمة	aya 198	
8 1.	Is the teacher addressin while distributing?	g grievances on answer scripts of IA	11					
	and the second	content beyond syllabus (CBS)?	1	1				

HOD MECHANICAL

A 10xe Co-ordinator

Principal

Dr. G. Balakrishnan, Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

