

IG Valley, Madurai Main Road, Manikandam, Tiruchirappalli - 620012

NAAC DOCUMENTS

QUALITY INDICATOR FRAME WORK

CRITERION – 1

CURRICULAR ASPECTS

SUBMITTED BY

IQAC INTERNAL QUALITY ASSURANCE CELL INDRA GANESAN COLLEGE OF ENGINEERING

Criteria 1

Curricular Aspects

100

- **1.1 Curricular Planning and Implementation (20)**
- 1.1.1 The Institution ensures effective curriculum planning and delivery through a well-planned and documented process including Academic calendar and conduct of continuous internal Assessment

Table of Content

S. No	Description
1.	Preface of the Course File
2.	Faculty Time Table
3.	Course Plan
4.	Content Beyond Syllabus
5.	Academic Audit Form
6.	Question Paper
7.	Answer Key
8.	Sample Answer Sheet
9.	Co Based Mark Entry
10.	Root Cause Analysis

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

PREFACE OF THE COURSE FILE

Batch	: 2021-2025	
Academic Year	: 2022-2023 / EVEN	
Program	: ELECTRICAL AND ELE	CTRONICS ENGINEERING
Year & Semester	: 2 nd Year / 4 th Semeste	r
Course Code	: EE 3402	NBA Course Code:
Name of the Course	: Transmission & Distr	ibution
Faculty in-charge	: Mr.D.Praveen Sangee	th Kumar, AP / EEE

Provees

Signature of the Faculty in-charge

Gr. Malathi

HoD / EEE

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SYLLABUS

EE3401

TRANSMISSION AND DISTRIBUTION LTPC3003

COURSE OBJECTIVES:

To impart knowledge about the configuration of the electrical power systems. To study the line parameters and interference with neighboring circuits.

To understand the mechanical design and performance analysis of transmission lines. To learn about different insulators and underground cables. To understand and analyze the distribution system.

UNIT I

TRANSMISSION LINE PARAMETERS

Structure of electric power system - Parameters of single and three phase transmission lines with single and double circuits -Resistance, inductance, and capacitance of solid, stranded, and bundled conductors - Typical configuration, conductor types - Symmetrical and unsymmetrical spacing and transposition – application of self and mutual GMD; skin and proximity effects - Effects of earth on the capacitance of the transmission line - interference with neighboring communication circuits.

UNIT II

MODELLING AND PERFORMANCE OF TRANSMISSION LINES

Performance of Transmission lines – short line, medium line and long line – equivalent circuits, phasor diagram, attenuation constant, phase constant, surge impedance – transmission efficiency and voltage regulation, real and reactive power flow in lines – Power Circle diagrams – Ferranti effect – Formation of Corona – Critical Voltages – Effect on line Performance.

UNIT III

SAG CALCULATION AND LINE SUPPORTS

Mechanical design of overhead lines – Line Supports – Types of towers – Tension and Sag Calculation for different weather conditions – Methods of grounding - Insulators: Types, voltage distribution in insulator string, improvement of string efficiency, testing of insulators.

UNIT IV

UNIT V

NDERGROUND CABLES

Underground cables – Types of cables – Construction of single-core and 3-core belted cables – Insulation Resistance – Potential Gradient – Capacitance of single-core and 3-core belted cables – Grading of cables – Power factor and heating of cables – DC cables.

DISTRIBUTION SYSTEMS

Distribution Systems – General Aspects – Kelvin's Law – AC and DC distributions –Concentrated and Distributed loading- Techniques of Voltage Control and Power factor improvement – Distribution Loss – Types of Substations – Trends in Transmission and Distribution: EHVAC, HVDC and FACTS (Qualitative treatment only).

TOTAL: 45 PERIODS

TEXT BOOKS:

Br. G. Balakrishnan, M.E., Ph.D., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

9

9

9

9

9

1. D.P.Kothari, I.J. Nagarath, 'Power System Engineering', Mc Graw-Hill Publishing Company limited, New Delhi, Third Edition, 2019.

 C.L.Wadhwa, 'Electrical Power Systems', New Age International Ltd, seventh edition 2022.
 S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi, Second Edition, 2008.

REFERENCE BOOKS:

1. B.R.Gupta, 'Power System Analysis and Design' S. Chand, New Delhi, Sixth Edition, 2011. 2. Luces M.Fualken berry, Walter Coffer, 'Electrical Power Distribution and Transmission', Pearson Education, 2007.

 Arun Ingole, "Power transmission and distribution" Pearson Education, first edition, 2018
 J.Brian Hardy and Colin R.Bayliss 'Transmission and Distribution in Electrical Engineering', Newnes; Fourth Edition, 2011.

5. G.Ramamurthy, "Handbook of Electrical power Distribution," Universities Press, 2013.
6. V.K.Mehta, Rohit Mehta, 'Principles of power system', S. Chand & Company Ltd, New Delhi, 2013

7. Hadi Saadat, 'Power System Analysis', McGraw Hill Education Pvt. Ltd., New Delhi, 3rd Edition, 23rd reprint, 2015.

8. R.K.Rajput, 'A Text Book of Power System Engineering' 2nd edition, Laxmi Publications (P) Ltd, New Delhi, 2016.

Gr. Malat

Signature of the HoD/EEE

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Lecture Schedule

Degree/Program: B.E / EEE Duration: 2022 - 2023

Course code &Name: EE3401 –Transmission & Distribution Semester: IV Faculty: D.Praveen Sangeeth kumar

AIM:

To impart knowledge about the configuration of the electrical power systems.

OBJECTIVES:

To impart knowledge on

- (i) To impart knowledge about the configuration of the electrical power systems.
- (ii) To study the line parameters and interference with neighboring circuits.
- (iii) To understand the mechanical design and performance analysis of transmission lines
- (iv) To learn about different insulators and underground cables
- (v) To understand and analyze the distribution system.

PREREQUISITES: Circuit theory, Electromagnetic theory.

COURSE OUTCOMES:

After the course, the student should be able to:

CO	Course Outcomes	POs	PSOs
C212.1	Understand the structure of power system, computation of transmission line parameters for different configurations.	1,2,3,4	1,2
C212.2	Model the transmission lines to determine the line performance and to understand the impact of Ferranti effect and corona on line performance.	1,2,3,4	1,2
C212.3	Do Mechanical design of transmission lines, grounding and to understand about the insulators in transmission system	1,2,3,4	1,2
C212.4	Design the underground cables and understand the performance analysis of underground cable	1,2,3,4	1,2
C212.5	Understand the modelling, performance analysis and modern trends in distribution system.	1,2,3,4	1,2
C212.6	Explain the working principle, speed control methods of DC motor and estimate the performance of DC motors through various testing methodologies.	1,2,3,4	1,2

Dr. G. Balakrishnan, M.E., Ph.D., **Principal** Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

S.No	Date	Period	Topics to be Covered	Book & Page. No.					
	UN	- I- TIV	TRANSMISSION LINE PARAMETERS Target	periods :9					
1	6.2.23	1	Structure of electric power system	TI,RI					
2	7.2.23	3	Parameters of single and three phase transmission lines with singleand double circuits						
3	10.2.23	1,2	Resistance, inductance, and capacitance of solid						
4	11.2.23	1	stranded, and bundled conductors - Typical configuration, conductor types	T1,R1					
5	13.2.23	1	Symmetrical and unsymmetrical spacing and transposition	T1,R1					
6	14.2.23	3	Application of self and mutual GMD	TI,RI					
7	17.2.23	1,2	GMD Problems	T1,R1					
8	18.2.23	3	skin and proximity effects	T1,R1					
9	20.2.23	1	Effects of earth on the capacitance of the transmission	T1,RI					
10	21.2.23	3	REVISION	T1,R1					
UNII	II - M	ODELLI	NG AND PERFORMANCE OF TRANSMISSION LINES Targe	t periods :9					
11	24.2.23	1,2	Performance of Transmission lines	T1,RI					
12	27.2.23	1	short line, medium line and long line of Transmission lines	T1,R1					
13	28.2.23	3	Equivalent circuits- short line, medium line and long line of Transmission lines	T1,RI					
14	3.3.23	1,2	Phasor diagram	T1,R1					
15	13.3.23	1	Attenuation constant, phase constant	T1,R1					
16	14.3.23	3	Surge impedance	T1,R1					
17	17.3.23	1,2	Transmission efficiency and voltage regulation	T1,R1					
18	18.3.23	1	Real and reactive power flow in lines	T1,R1					
19	20.3.23	1	Power Circle diagrams	T1,R1					
20	21.3.23	3	REVISION	T1,R1					
21	24.3.23	1	REVISION / PROBLEM	T1,R1					
		UNIT	III - SAG CALCULATION AND LINE SUPPORTS Target Period						
22	24.3.23	2	Mechanical design of overhead lines	T1,R1					
23	25.3.23	3	Line Supports						
24	27.3.23	1	Types of towers	T1,R1					
25	28.3.23	3	Tension and Sag Calculation for different weather conditions -	T1,R1					
26	31.3.23	1	Methods of grounding.	T1,R1					
27	31.3.23	2	Insulators: Types,	T1,RI					
28	10.4.23	1	voltage distribution in insulator string	T1,R1					
29	11.4.23	3	improvement of string efficiency	T1,R1					
30	14.4.23	1	Testing of insulators.	T1,R1					
31	14.4.23		Problems	T1,R1					
32	17.4.23	1	REVISION	T1,R1					
22	10 / 00		UNIT IV - UNDERGROUND CABLES Target Periods :9						
33	18.4.23	3	Underground cables	111					
4	21.4.23	1	Types of cables	T1,R1					
35	21.4.23		- Construction of single-	T1,R1					
A	24.4.23	In last manufapproph loss	3-core belted cables	T1,R1					
	25.4.23	an and the second s	Insulation Resistance	T1 D1					
38	28.4.23		- Potential Gradient	T1,R1					
9	28.4.23	2 -	- Capacitance of single-core and 3-core belted cables -	TI,RI					

(D:

40	1.5.23	1	Grading of cables	ma ma
41	12.5.23	1	- Power factor and heating of cables	
42	12.5.23	2	REVISION	T1,R1
			UNIT V - DISTRIBUTION SYSTEMS Target Periods:9	
43	13.5.23	1	Distribution Systems	T1,R1
44	13.5.23	2	General Aspects - Kelvin's Law	T1,R1
45	15.5.23	1	AC and DC distributions	T1,R1
46	16.5.23	3	Concentrated and Distributed loading	T1,RI
47	19.5.23	1	Techniques of Voltage Control and Power factor improvement	T1,R1
48	19.5.23	2	Distribution Loss	T1,R1
49	20.5.23	1	Types of Substations	T1,RI
50	22.5.23	1	Trends in Transmission and Distribution	T1,R1
51	23.5.23	3	REVISION	T1,R1
			Content Beyond the Syllabus	
52			GRID CONNECTED PV SYSTEM USING NET METER	Material

Book Reference - Text Books

SI.	Title of the Book	Author	Publisher	Year
1.	Power System Engineering'	Nagrath, I.J. and Kothari, D.P	Tata McGraw Hill, Fourth Edition	2019.
2.	Electrical Power Systems'	C.L.Wadhwa.	New Age International Ltd.,	2022.
3	Electric Power Generation	S.N. Singh	Prentice Hall of India Pvt. Ltd, New Delhi	2008

Book Reference - References

SI	Title of the Book	Author	Publisher	Year
1.	Power System Analysis and Design'	B.R.Gupta.,	S. Chand, New Delhi	2011.
2.	Electrical Power Distribution and Transmission	Luces M.Fualken berry, Walter Coffer	Pearson Education	2007

Website Refere ce:

http://nptel.iitm.ac.in/courses.php?branch=Electrical www.freebookspot.com

praises

Signature of the Faculty in-charge

Gr. Malatti

HoD / EEE

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Identification of Curricular Gap & Content Beyond Syllabus(CBS)

Name of the Faculty :D.PRAVEEN SANGEETH KUMAR Course Code & Name:EE3401 TD

Degree & Program:B.E. /EEE Semester & Section: IV Academic Year: 2022 -2023 /EVEN

L Mapping of Course Outcomes with POs & PSOs.(before CBS)

-	-	1.		SAFEFER ,	CAR P.P.	ING OA	009	-, E 00	A WILL	PUs - I	Jeiure (.DO .		
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂
C212.1	3	2	1	1	-	-	-	-	-	2	1	1	2	2
C212.2	3	2	1	1	-		-	-	-	2	1	1	2	2
C212.3	3	2	1	1	-	-	-			2	1	1	2	2
C212.4	3	2	1	1	-	-	-	-	-	2	1	1	2	2
C212.5	3	2	1	1	-		-	-	-	2	1	1	2	2
C212.6	3	2	1	1			-	- 1	- +	2	1	1	2	2
C212	3	2	1	1	-	-		-		2	1	1	2	2

Table.1 Mapping of COs, C, PSOs with POs - before CBS

II. Identification of content beyond syllabus.

Table.2 Identification of content beyond syllabus						
Details of Content Beyond Syllabus(CBS) added	POs strengthened/ vacant filled	CO/Unit				
GRID CONNECTED PHOTOVOLTAIC POWER SYSTEM	PO5(2) Vacant filled	C212.5 & C212.6/ 1V & V				

III. Mapping of Course Outcomes with POs & PSOs. (After CBS)

			T	able.3	Mapp	ing of	COs,	C, PS	Os wi	th POs-	after (CBS.		
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C212.1	3	2	1	1	b-quarter	-	-			2	1	1	2	2
C212.2	3	2	1	1	-	-		-	-	2	1	1	2	2
C212.3	3	2	1	1	-		-	-	-	2	1	1	2	2
C212.4	3	2	1	1	-		-		-	2	1	1	2	2
C212.5	3	2	1	1	*2	-		-	-	2	1	1	2	2
C212.6	3	2	1	1	*2	-		-	-	2	1	1	2	2
C212	3	2	1	1	*2					2	- 1	1	2	2

prave.

Signature of the Faculty

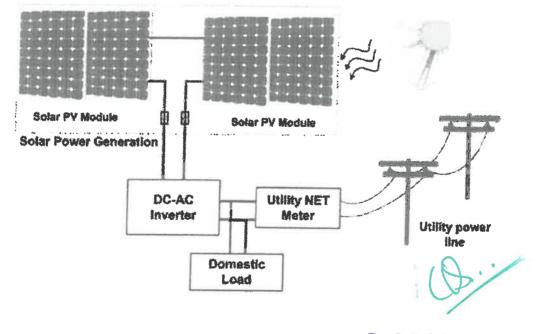
Dr. G. Balakrishnan, M.E., Ph.D., **Principal** Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

Gr. Mala

HoD/EEE

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu - 620 012, India

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)


DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Identification of Curricular Gap & Content Beyond Syllabus(CBS) MATERIAL

Name of the Faculty : D.PRAVEEN SANGEETH KUMAR Course Code & Name: EE3302 & TRANSMISSION AND DISTRIBUTION Degree & Program: B.E. /EEE Semester & Section: IV / A Academic Year: 2022 - 2023/EVEN

TOPIC: Grid Connected Photovoltaic Power system

INTRODUCTION

In a grid connected PV system, also known as a "grid-tied", or "on-grid" solar system, the PV solar panels or array are electrically connected or "tied" to the local mains electricity grid which feeds electrical energy back into the grid.

A grid connected PV system is one where the photovoltaic panels or array are connected to the utility grid through a power inverter unit allowing them to operate in parallel with the electric utility grid.

In the previous tutorial we looked at how a <u>stand alone PV system</u> uses photovoltaic panels and deep cycle batteries to store its solar energy providing a complete self-contained solar power system. However, this type of solar system works fine providing there is enough solar radiation during the day to recharge the batteries for use during the night.

Stand alone solar systems are self contained fixed or portable solar PV systems that are not connected to any local utility or mains electrical grid as they are generally used in remote and rural areas. This generally means that the electrical appliances are a long way from the nearest fixed electrical supply, or were the cost of extending a power line from the local grid may be very expensive

In recent years, however, the number of solar powered homes connected to the local electricity grid has increased dramatically. These **Grid Connected PV Systems** have solar panels that provide some or even most of their power needs during the day time, while still being connected to the local electrical grid network during the night time.

Solar powered PV systems can sometimes produce more electricity than is actually needed or consumed, especially during the long hot summer months. This extra or surplus electricity is either stored in batteries or as in most grid connected PV systems, fed directly back into the electrical grid network.

In other words, homes and buildings that use a grid connected PV system can use a portion or all of their energy needs with solar energy, and still use power from the normal electrical mains grid during the night or on cloudy dull and rainy days, giving the best of both worlds. Then in grid connected PV systems, electricity flows back-and-forth to and from the mains grid according to sunlight conditions and the actual electrical demand at that time.

In a grid connected PV system, also known as a "grid-tied", or "on-grid" solar system, the PV solar panels or array are electrically connected or "tied" to the local mains electricity grid which feeds electrical energy back into the grid.

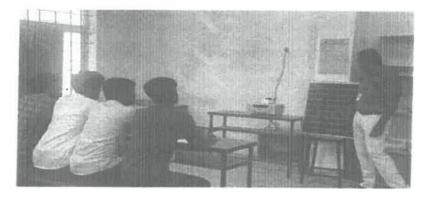
The main advantage of a grid connected PV system is its simplicity, relatively low operating and maintenance costs as well as reduced electricity bills. The disadvantage however is that a sufficient number of solar panels need to be installed to generate the required amount of excess power.

Since grid tied systems feed their solar energy directly back into the grid, expensive back-up batteries are not necessary and can be omitted from most grid connected designs. Also, as this type of PV system is permanently connected to the grid, solar energy consumption and solar panel sizing calculations are not required, giving a large range of options allowing for a system as small as 1.0kWh on the roof to help reduce your electricity bills, or a much larger floor mounted array that is large enough to virtually eliminate your electricity bills completely.

Signature of the Faculty

Gr. Malatti

HoD/EEE


IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu - 620 012, India

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Identification of Curricular Gap & Content Beyond Syllabus(CBS) Proof

Name of the Faculty : D.PRAVEEN SANGEETH KUMAR Course Code & Name: EE3302 & TRANSMISSION AND DISTRIBUTION Degree & Program: B.E. /EEE Semester & Section: IV Academic Year: 2022 -2023/EVEN

TOPIC: Grid Connected Photovoltaic Power system

Signature of the Faculty

Gr. Malathi HoD/EEE

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Assignment Ouestion Paper

Name of the Student: Hariharan E

AU Register Number: 811221105012

	Assignment -		Date of Issue:	13.02.2023	Marks	10
Course code	EE3402	Course Title	TRANSMISSIO	N & DISTRIBUTION	I	a philodoxia ddd bodonoon .
Year	п	Semester/Section	IV	Date of Submission:	27.02.2	023

Q.No	Questions					
1	Derive expression for the inductance of three phase line with conductors untransposed LINE	C212.1				
2	Corona Formation ; Nominal PI Method	C212.1				

Prairees

Name and Signature of the Faculty Incharge

Gr. Malathi HoD/EEE

Dr. G. Balakrishnan, M.E., Ph.D., Principal

Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Assignment Answer Sheet

Name of the Student: Hariharan E

AU Register Number: 811221105012

	Assignmen	t-01	Date of Issue:	13.02.2023	Marks 10			
Course code	EE3402	Course Title	TRANSMISSIO	N& DISTRIBUTION	J			
Year	I	Semester/Section	IV	Date of Submission:		.023		

Q.No	Questions	CO
1	Derive expression for the inductance of three phase line with conductors untransposed LINE	C212.1
2	Corona Formation ; Nominal PI Method	C212.1

Mark Allocation

Rubrics	Marks Allocated	Marks obtained
Content Quality	6	5
Presentation Quality	2	1
Timely submission	2	1
Total marks	10	07

I Provees

Name and Signature of the Faculty Incharge

Gr. Malathi HoD/EEE

Register Number:

8

Q	S IG	RA GANESAI Valley, Manikandan proved by AICTE, Ne	n, Tiruchirappalli	. Tamil Nadu – (620 012. Inc	lia		
	Internal Assessm		Date/Session	08/03/23 AN Marks				
Course c	ode EE3402	Course Title	TRANSMISSIC	ON & DISTRIBUTI	ION	alaman sata array ala		
Regulatio	on 2022	Duration	90 minutes	Academic Ye		2-23		
Year	2 ND	Semester	IV	Department	DIEL			
COURSI	COUTCOMES	a da a ada is mayor na ngananagan ay na n	- · · · · · · · · · · · · · · · · · · ·					
CO1;	To Explain the structu configurations.	are of power system, com	outation of transmissi	on line parameters	for different			
CO2:	Model the transmission and corona on line per	n lines to determine the li rformance.	ne performance and t	to understand the in	npact of Ferr	anti effect		
CO3:		of transmission lines, gro	unding and to unders	tand about the insu	lators in tran	smission		
CO4:	Design the underground	nd cables and understand	the performance anal	vsis of underground	i cable			
CO5:	To Explain the modeli	ng, performance analysis	and modern trends in	distribution system				
CO6:	Explain the working p through various testin	rinciple, speed control me	thods of DC motor an	id estimate the perf	ormance of D	C motors		

Q.No.	Question	CO	BTS			
	PART A		Martin Pellin and an and a second			
	(Answer all the Questions $10 \times 2 = 20$ Marks)					
1	Explain skin effect?	CO1	K2			
2	Define medium lines.	CO1	K1			
3	Why ACSR conductors are used in lines?	CO1	K2			
4	Mention the limitations of end condenser method.	CO1	KI			
5	Mention the significance of Surge impedance loading	CO3	K1			
6	Define a neutral plane	CO1	K5			
7	Classify different types of conductors	CO2	K4			
8	Define critical disruptive voltage	CO1	K1			
9	Define visual critical voltage	CO1	K1			
10	State any two merits of corona	COI	K1			
	PART B (Answer all the Questions 2 x 10 = 20 Marks)	de				
lla	Derive expression for the inductance of three phase line with conductor's untransposed line.	COI	K2			
	OR					
11b	Derive an expression for capacitances of a single phase transmission system and discuss the effect of earth on capacitance with suitable equation.	CO1	.K2			
12a	earth on capacitance with suitable equation.					
	OR	• —•• ••••••••••••••••••••••••••••••••	L			
12b	(Answer all the Questions 2 x 10 = 20 Marks) Ilia Derive expression for the inductance of three phase line with conductor's untransposed line. OR 1b Derive an expression for capacitances of a single phase transmission system and discuss the effect of earth on capacitance with suitable equation. 2a Determine the efficiency and regulation of a 3phase, 100Km, 50 Hz transmission line delivering 20 MW at a power factor of 0.8 lagging and 66 kV to a balanced load. The conductors are of copper, each having resistance 0.1 / Km, 1.5 cm outside dia, spaced equilaterally 2 meters between centers. Use nominal T method OR 2b A Single phase O.H line delivers 1100 KW at 33 KV at 0.8 PF lagging. Total Resistance and Inductive reactance of the line 10 ohm & 15 ohm. Find Sending End voltage, Sending End Power factor & Efficiency					
	PART C		1000000000			
	(Answer all the Questions $1 \ge 10$ Marks)					
13a	xplain briefly about Corona and Methods of Reducing Corona.	CO3	K2			
	OR					
13b	Determine the Inductance of line having Diameter of 2.5 cm.					
	-0 C+	CO3	K3			

Course Faculty

Gr. Malatti HoD

QN	Question	CO	E
	PART A	1	_ 1 ~
1	(Answer all the Questions 10 x 2 = 20 Marks) Explain skin effect?		
	skin effect, in electricity, the tendency of alternating high-frequency currents to crowd toward the surface of a conducting material	C01	1
2	Define medium lines. A medium transmission line is a type of overhead transmission line that is used to transmit electrical power over a distance of more than 80 km but less than 250 km.	COI	H
3	Why ACSR conductors are used in lines? Aluminum conductor steel-reinforced cable (ACSR) is a type of high-capacity, high strength steep dod	SFR) is a type of high-capacity, high-strength stranded CO1 S. CO1 sulations because the distributed capacitance has been CO1 ding CO3 ion line has been loaded above or below its stability limit. CO3 city Of The Rotor Wires Is Exactly Parllel To Magnetic CO1 ssified as conductors, insulators and superconductors CO1 mum phase to the neutral voltage required for the corona CO1 hich corona glow appears and you can see it visually CO1 he conductor becomes conducting and hence the virtual sed diameter reduces the electrostatic stresses between ransients produced by surges. CO1 PART B CO1 CO1 line with conductor's untransposed line CO1	ŀ
4	Mention the limitations of end condenser method. There is a considerable error (about 10%) in calculations because the distributed conscitute has been	CO1	K
5	Mention the significance of Surge impedance loading	CO3	K
6	SIL is also an indicator of whether the transmission line has been loaded above or below its stability limit. Define A Neutral Plane The Plane Within The Machine Where The Velocity Of The Rotor Wires Is Exactly Parllel To Magnetic Flux Lines	agnetic CO1	
7	Classify different types of conductors	I the surfaceCO1actricalCO1actricalCO1strandedCO1as beenCO3ability limit.CO3ability limit.CO1MagneticCO1hectorsCO1isuallyCO1he virtual betweenCO1creases.CO1effect of electric argerCO120 MW h having minal TCO4	K
8	Depending on the conductivity, materials are classified as conductors, insulators and superconductors		1
	Critical Disruptive Voltage is defined as the minimum phase to the neutral voltage required for the corona discharge (corona losses) to start.	CO1	K
9 10	Define visual critical voltage This can be defined as the minimum voltage at which corona glow appears and you can see it visually State any two merits of corona	ally CO1	
10	 (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence the virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. 	COI	K
	PART B	~	
la	Derive expression for the industance of these these line id.	······································	
	 Derive expression for the inductance of three phase line with conductor's untransposed line. The inductance of the three-phase line is equal to the two-wire line. Thus, it is found that the values of the inductance for the three phase are accurately used in the three phase. 	CO1	K
	 values of the inductance for the three phases are equalized by transpositions. is called the capacitance to neutral or capacitance to ground. >With the effect of earth capacitance increases. Diagram (6 Marks) 		
lb	OR Derive an expression for capacitances of a single phase transmission system and discuss the effect of earth on capacitance with suitable equation. • Earth affects the calculation of capacitance of three-phase lines as its presence alters the electric field lines. Usually the height of the conductors placed on transmission towers is much larger than the spacing between the conductors. • Diagram (6 Marks)	CO1	K2
a	Determine the efficiency and regulation of a 3phase, 100Km, 50 Hz transmission line delivering 20 MW at a power factor of 0.8 lagging and 66 kV to a balanced load. The conductors are of copper, each having resistance 0.1 / Km, 1.5 cm outside dia, spaced equilaterally 2 meters between centers. Use nominal T Method • P.F 0.9 • % Reg 15.27 • Sending end power 21.18 MW • Efficiency 94 %	C04	K3
> [OR A Single phase O.H line delivers 1100 KW at 33 KV at 0.8 PF lagging. Total Resistance and Inductive		What .
	 reactance of the line 10 ohm & 15 ohm. Find Sending End voltage, Sending End Power factor & Efficiency P.F 0.8 % Reg 13.27 Sending end power 24.18 MW Efficiency 92 % 	004	К3
	PART C (Answer all the Questions 1 x 10 = 10 Marks)		
		weather annound grann as	K2
B	unlain heidlichent () 12/ it i mart i m	203	Da.L.

	OR		nanciante e oculor
	Determine the Inductance of line having Diameter of 2.5 cm.	CO3	K3
1	*=0.7788×2×10-3=0.001557 *=0.7788×2×10-3=0.001557 ==2×10-7ln[jo] nd =18.92×10-7H/m		

Drawen

Course Faculty

Gr. Ma latti HoD

\$:-

INDRA GANESAN COLLEGE OF ENGINEERING IG VALLEY, MANIDANDAM, TIRUCHIRAPPALLI – 620 012 EPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ACADEMIC YEAR 2022 – 2023 (EVEN SEMESTER) <u>STUDENTS MARK STATEMENT- CO BASED</u> INTERNAL TEST-I

SUBJECT CODE & TITLE: EE3401 TRANSMISSION & DISTRIBUTION

YEAR/SEM: II/IV

MONTH & YEAR:

S.NO	REGNO	STUDENT NAME	CO1 (26)	CO2 (2)	CO3 (12)	CO4 (10)	TOTAL (50)
1.	811221105012	Hariharan E	12	01	10	07	30
2.	811221105018	Lingeswaran R	09	01	07	02	19
3.	811221105027	Sangili S	09	00	07	02	18
4.	811221105039	Srikanth M	13	01	10	07	31

MARKS RANGE:

0 31-4	0 41-50
	Marrison and a manual consideration and a manual consideration of the second second second second second second
	-

Total No.of Candidates Present	04
Total No.of Candidates Absent	00
Total No.of Students Pass	02
Total No. of Students Fail	02
Percentage of Pass	50

STAFF INCHARGE

Gr. Malathi HoD/EEE

PRINCIPAL

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ROOT CAUSE ANALYSIS

Name (Degree IA Test Target	 4 LY REWEYL 			Semester &	le & Name : EE3 Section : IV/A Exam/Month & Y : 5	l 'ear:	ON AND DISTRIBUTION
	ⁱ S.NO	BATCH NO REG	NAME OF THE STUDENT	CAUSES FOR FAILURE	SIGNATURE OF THE STUDENT WITH DATE	CORRECTIVE ACTION TAKEN	PREVENTIVE ACTION TAKEN
	2	**	SANGILI S	Lagging of problem solving	Sonfi	Instructed to Solve more number of problems	Assignment gi.e

Signature of the Faculty Member

G.Malath

Signature of the HoD/111

agence by the back	and the second s					C Acade		- A gran	
:d: 4	TER ents Register	MES	SE	EVEN	2-2023	YEAR: 202 / Sem / Sec :	ACADEMIC nent : EEE Year	e of Departr	lam
			uygru – Manadan	ar, aquarque, aquardera,	there and in products and		nation : IA Test -MOI		
Rumarts	Perse %	No of Fallures	No of Absorbars	No of students Attended	Course File Verfind (Y / N)	Course Leg Back Vertfied (Y / N)	List of Reg.Nc Vertiled	Caurse Coda	S.No.
	75%	1		4	У	y.	3112 21105039	EE 3401	
ad an	ganga ya 1999 da wa		p. Maarinel, aastaliilii 16	ingiti.gin.grogfyedd			A.009.04.04	Prant water	
						-	-	and share their spin - new production	
		i							
				\$v;	6 Ter				
undefinit other	una de ser affete germerty elder	p.,							108. ki go 🛛 k
							,		
					ied by	Veril			
)	alliel.	K	: M.	KAATHIC	Dr.	Name and Signature:	nal Member	rter
) O.J.	en.	Kum	Rajith	onmathi 5	Mr.S. p	Name and Signature:	al Member	ater

Gr. Malatti

HoD/ EEF

2 Cong

DCH.

IQAC Co-ordinator

Principal

Dr. G. Balatorishman, M.E., Pn. Principal Indra Ganesan College of Engineering IG Valley, Madurai Waih Road Manikandam, Trichy 620 912.