

Accredited by NAAC with '8+' Grade, 2(f) & 128 Status Institution by UGC

IG Valley, Madurai Main Road, Manikandam, Tiruchirappalli - 620012

NAAC DOCUMENTS

QUALITY INDICATOR FRAME WORK

CRITERION - 1

CURRICULAR ASPECTS

SUBMITTED BY

IQAC

INTERNAL QUALITY ASSURANCE CELL
INDRA GANESAN COLLEGE OF ENGINEERING

1.1 Curricular Planning and Implementation (20)

1.1.1 The Institution ensures effective curriculum planning and delivery through a well-planned and documented process including Academic calendar and conduct of continuous internal Assessment

Table of Content

S. No	Description
1.	Preface of the Course File
2.	Faculty Time Table
3.	Course Plan
4.	Content Beyond Syllabus
5.	Academic Audit Form
6.	Question Paper
7.	Sample Answer Sheet
8.	Co Based Mark Entry
9.	Root Cause Analysis
10.	Retest Co Based Mark Entry

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu - 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING"

PREFACE OF THE COURSE FILE

Batch

: 2016-2020

Academic Year

: 2018-2019 / EVEN

Program

: ELECTRONICS AND COMMUNICATION ENGINEERING

Year & Semester

: 3nd Year / 6th Semester / 'B' Section

Course Code

: EC 6601

NBA Course Code: C312

Name of the Course

: VLSI DESIGN

Faculty in-charge

: Ms.M.NANDHINI/ AP / ECE

M. Nanno Signature of the Faculty in-charge

N. Correctly

Dr. G. Balakrishnan, M.E., Ph.D., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu - 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

Syllabus

EC6601 VLSI DESIGN

LTPC3003

OBJECTIVES:

In this course, the MOS circuit realization of the various building blocks that is common to any

- microprocessor or digital VLSI circuit is studied. Architectural choices and performance tradeoffs involved in designing and realizing the circuits
- in CMOS technology are discussed. The main focus in this course is on the transistor circuit level design and realization for digital
- · operation and the issues involved as well as the topics covered are quite distinct from those encountered in courses on CMOS Analog IC design.

UNIT I MOS TRANSISTOR PRINCIPLE

NMOS and PMOS transistors, Process parameters for MOS and CMOS, Electrical properties of CMOS circuits and device modeling, Scaling principles and fundamental limits, CMOS inverter scaling, propagation delays, Stick diagram, Layout diagrams

UNIT II COMBINATIONAL LOGIC CIRCUITS

Examples of Combinational Logic Design, Elmore"s constant, Pass transistor Logic, Transmission gates, static and dynamic CMOS design, Power dissipation - Low power design principles

UNIT III SEQUENTIAL LOGIC CIRCUITS

Static and Dynamic Latches and Registers, Timing issues, pipelines, clock strategies, Memory architecture and memory control circuits, Low power memory circuits, Synchronous and Asynchronous design

UNIT IV DESIGNING ARITHMETIC BUILDING BLOCKS

Data path circuits, Architectures for ripple carry adders, carry look ahead adders, High speed adders, accumulators, Multipliers, dividers, Barrel shifters, speed and area tradeoff

UNIT V IMPLEMENTATION STRATEGIES

Full custom and Semi custom design, Standard cell design and cell libraries, FPGA building block architectures, FPGA interconnect routing procedures.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course,

students should Explain the basic CMOS circuits and the CMOS process technology.

Discuss the techniques of chip design using programmable devices.

Dr. G. Balakrishnan, M.E., Ph.D., Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

- Model the digital system using Hardware Description Language.
 TEXTBOOKS:
- 1. Jan Rabaey, Anantha Chandrakasan, B.Nikolic, "Digital Integrated Circuits: A Design Perspective", Second Edition, Prentice Hall of India, 2003.
- 2. M.J. Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997 REFERENCES:
- 1. N.Weste, K.Eshraghian, "Principles of CMOS VLSI Design", Second Edition, Addision Wesley 1993
- 2. R.Jacob Baker, Harry W.LI., David E.Boyee, "CMOS Circuit Design, Layout and Simulation", Prentice Hall of India 2005
- 3. A.Pucknell, Kamran Eshraghian, "BASIC VLSI Design", Third Edition, Prentice Hall of India, 2007.

Dr. G. Balakrishnan, M.E., Ph.D.,
Principal

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

Faculty Time Table

			I.	Is.M.Nand	hini			
Day Order	1	2	3	4	5	6	7	8
1		EC6601						
п	EC6601							
H								
IV			EC6601					
V		EC6601						
							- I	
S.Code		Tit	tle		Year / Br	anch	Hou	rs
EC6601	VLSI DES	SIGN			III / ECI	EΒ	4	
			TÔ	TAL -4 h	oure			

Dr. G. Balakrishnan, M.E., Ph.D.,

Principal

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Lecture Schedule

Degree/Program: B.E / ECE

Course code &Name: EC6601 -VLSI Design

Duration: Dec 2018 - Apr 2019

Semester: VI Section: B Faculty: Ms.M.Nandhini

AIM:

To expose the students to principle of operation and performance of VLSI circuits and design **OBJECTIVES:**

- Understand the fundamentals of IC technology components and their characteristics
- Understand combinational logic circuits and design principles.
- Understand sequential logic circuits and clocking strategies
- Understand Memory Architecture and building blocks
- Understand ASIC Design functioning and design

PREREQUISITES: Electronic Devices, Digital Electronics

COURSE OUTCOMES:

After the course, the student should be able to:

CO	Course Outcomes	POs	PSOs
C302.1	In depth knowledge of MOS technology	1,2,3,4,11,12	1,2,3
C302.2	Explain the Combinational Logic Circuits and Design Principles	1,2,3,4,11,12	1,2,3
C302.3	Explain Sequential Logic Circuits and Clocking Strategies	1,2,3,4,11,12	1,2,3
C302.4	Explain the Memory architecture and building blocks	1,2,3,4,11,12	1,2,3
C302.5	Apply the ASIC Design Process and Testing	1,2,3,4,11,12	1,2,3
C302.6	Design using Programmable Devices (ROM, PLA, FPGA),	1,2,3,4,11,12	1.2.3

S.No	Date	Period	Topics to be Covered	Book & Page. No.
UNIT -I - Introduction to MOS Transistor Principle				Target periods :09
1	17.12.18	2	Process parameters for MOS and CMOS	1(12-16)
2	18.12.18	1	Electrical properties of CMOS circuits	1(17-20)
3	20.12.18	3	Device Modeling	100.00
4	21.12.18	2	Scaling principles and fundamental limits	1(30-34)
5	22.12.18	1	CMOS inverter, scaling	1(25-27)
6	24.12.18	2	Propagation Delays	1(31-32)
7	27.12.18	3	Stick-diagram /	1(33-35)
8	28.12.18	2	Stick diagram-Contd	1(35-36)

Dr. G. Balakrishnan, M.E., Ph.D.,

Indra Ganesan College of Engineering
IG Valley, Madurai Main Road

Manikandam, Trichy-620 012.

9	29.12.18	1	Layout diagrams	1(38-39)
UNIT	II - Introduc	ction to	Combinational Logic Circuits Target perio	ods :09
10	04.01.19	2	Examples of Combinational Logic Design	1(54-62)
-	04.01.15	-	Examples of Seminational Eogle Besign	2(2-4)
11	05.01.19	1	Elmore"s constant	1(62-71)
				2(20-28)
12	07.01.19	2	Pass transistor Logic	1(71-91)
13	08.01.19	1	Transmission gates	2(29-34,66-70)
14	10.01.19	3	Examples	1(101-106)
15	11.01.19	2	Static and Dynamic CMOS Design	1(124-125)
16	18.01.19	2	Power dissipation	1(116-120)
17	19.01.19	3	Low power design principles	1(127-131)
18	21.01.19	2	Problems on Static and Dynamic CMOS Design	1(94-97)
UN	IT III - Intr	oduction	to Sequential Logic Circuits	Target Periods :09
19	28.01.19	2	Static and Dynamic Latches and Registers	1(158-160)
12	7.00.00.00.00.00.00.00.00.00.00.00.00.00	2	Static and Dynamic Lateries and Registers	2(161-164)
20	29.01.19	1	Timing Issues,	1(161-172)
21	31.01.19	3	Clock Strategies	1(173-176)
21	31.01.17	<i>3</i>)	Glock Strategies	2(164-184)
22	01.02.19	2	Memory Architecture and Memory Control Circuits	1(176-178)
44	01.02.17		Memory Architecture and Memory Control Circuits	2(185-202)
23	02.02.19	2	Low Power Memory Circuits	1(216-223)
43	02.02.19	2	Low Power Memory Circuits	2(285-293)
24	04.02.19	2	Synchronous Design	2(223-229)
24	04.02.19	2	Sylicitorious Design	1(223-239)
25	05.02.19	1	Asynchronous Design	1(247-249)
26	07.02.19	3	Asynchronous Design-Contd	Material
27	08.02.19	2	Pipelines	Material
UNIT	IV - Introd	luction t	o Designing Arithmetic Building Blocks Ta	rget Periods :09
28	18.02.19	2	Data Path Circuits	1(285-287)
	330000000000000000000000000000000000000		Constantial Colonia Service Constant	2(360-365)
29	19.02.19	1	Architectures For Ripple Carry Adders	
30	21.02.19	3	Multipliers	1(287-302)
31	22.02.19	2	Manchester carry chain adder	1(305-307)
32	23.02.19	3	Carry Look Ahead Adders	1(308-309)
33	25.02.19	2	Dividers	1(305-307)
34	26.02.19	1	High Speed Adders	1(311-313)
35	28.02.19	3	Accumulators	1(326-327)
36	01.03.19	2	Speed And Area Tradeoff	1(328-329)
		600		et Periods:09
37	07.03.19	3	ASIC	1(285-287)
38	08.03.19	2	Full custom and Semi custom design	1(361-367)
9	09.03.19	2	Standard Cell Design	1(381-405)
10	11.03.19	2	Cell Libraries	1(408-410)
1	12.03.19	1	FPGA	1(337-340)
12	14.03.19	3	FPGA building block architectures	1(412-415)
3	15.03.19	2	FPGA Interconnect	1(419-421)

Dr. G. Balakrishnan, M.E., Ph.D.,
Principal
Indra Ganesan College of Engineering
IG Valley, Madurai Main Road
Manikandam, Trichy-620 012.

44	16.03.19	1	Routing Procedures	1125-425
45	18.03.19	2	Routing Procedures-Contd	
Conto	ent Beyond th	e Sylla	bus	
46			Scan based test techniques	Material
47	Application Specific Integrated Circuits			Merad

Book Reference - Text Books

SI.	Title of the Book	Author	Publisher	Year	
1.	Digital Integrated Circuits: A Design Perspective	Jan Rabaey, Anantha Chandrakasan, B.Nikolic	Prentice Hall of India	2503	
	Application Specific Integrated Circuits	M.J. Smith	Addisson Wesley	1997	

Book Reference - References

st	Title of the Book	Author	Publisher	Year
1.	Principles of CMOS VLSI Design	N.Weste. K.Eshraghian	Addision Wesle/	1993
2.	CMOS Circuit Design, Layout and Simulation	R.Jacob Baker, Harry W.Ll., David E.Boyee	Prentice Hall of India	2005
3,	BASIC VLSI Design	A.Pucknell, Kamran Eshraghian	Prentice Hall of India	2005

Website Reference:

http://nptel.iitm.ac.in/courses.php?branch=Electrical www.freebookspot.com

M. Nantr: Signature of the Faculty in-charge

Dr. G. Balakrishnan, M.E., Ph.D.,

Principal Indra Ganesan College of Engineering

IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Identification of Curricular Gap & Content Beyond Syllabus(CBS)

Name of the Faculty : Ms.M. Nandhini

Course Code & Name: EC 6601&VLSI Design

Degree & Program: B.E. /ECE

Semester & Section: III / B Academic Year: 2018 -2019 /EVEN

I.Mapping of Course Outcomes with POs & PSOs. (before CBS)

Table, 1 Mapping of COs. C. PSOs with POs - before CRS

Course	PO1	POZ	P.03	PO4	PO5	DATE OF	COS, C	L, PSC)s with	POs - b	efore C	BS.		
C304.1	2	2	1,00	-	PU5	. PO6	PO7 -	PQ8	PO9	PO10	PO11	PO12	P501	PSO2
C304.2	2	2	-	2	-	-	-	-	-	-	1	2	2	3
	2	2	2	2	-	-	-	-	-	-	1	1	3	3
C304.3	2	2 ,	2	2	-	12	-	-	-		1	1	3	3
C304.4	2 .	2	2	2	2 .	-1 11	_				1	2	3	3
C304.5	2	2	2	2	-	-		-	-	-	1 .	3	3	3
C304.6	2	.2	2	2	-	-	-	7	-	•	1	2	3	3
		_	4	2	-	-	- 1	+	-	-	1	2	3	3

II. Identification of content beyond syllabus.

Table.2 Identification of content beyond syllabus

Details of Content Beyond Syllabus(CBS) added	POs strengthened/	CO/Unit	
Scan based test techniques	vacant filled	-	
Application Specific Integrated Circuits		5	
17 optoble integrated Circuits		5	

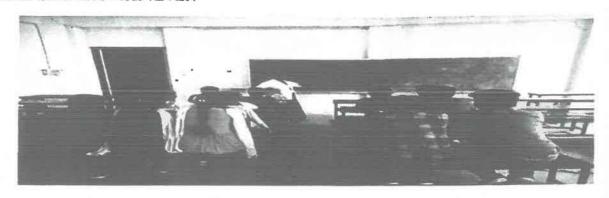
III. Mapping of Course Outcomes with POs & PSOs. (After CBS)

Table.3 Mapping of COs, C, PSOs with POs- after CBS.

C	001	1000	1	Tana	A	The Contract of				th POs	- anter i	CBS.		
Course	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C304.1	2	2	2	2	-	-	-	-	-	-	1	2	2	2
C304.2	2	2	2	2	-	-	-	-	-	_	1		3	3
C304.3	2	2	2	2			-	_		_	1	1	3	9
C304:4	2	2	2	2	-	-			-		1	4	3	3
C304.5	2	2	2	2	2				1	-	1	3	3	3
	2	2	2			-	-	•	-	*	1	2	3	3
C304.6	2	4	4	2	-		*	-	-	.	1	2	3	3
C304	2	2	2	2	2	-	•	-	-	-	1	2	3	3

Signature of the Faculty

Dr. G. Balakrishnan, M.E., Ph.D.,


Principal

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Proof of Curricular Gap & Content Beyond Syllabus(CBS)

Name of the Faculty :Ms.M.Nandhini Degree & Program:B.E. /ECE Academic Year: 2018 -2019 /EVEN Course Code & Name: EC6601- VLSI DESIGN Semester & Section: VI/B

M. Nac.

Dr. G. Balakrishnan, M.E., Ph.D.,

Principal
Indra Ganesan College of Engineering
IG Valley, Madurai Main Road
Manikandam, Trichy-620 012.

Nugeth HoD/EGE

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

Assignment Question Paper

Assignment - 01			Date of lasue:	04.01.2019	Marke T	3 /1
Course code	EC6601	Course Title	VLSI DESIGN	TYREST MAN		
Year III		Samonton/Continu				
	1.17	Semester/Section	VI/ B	Date of Submission:	11,01.2	019

Q.No	Questions	CO
1	Explain the characteristics of Pass Transistor and Transmission gate	('304.2
2	Explain the static and dynamic power dissipation	C'304,2

M. Wardtinl.

Name and Signature of the Faculty Incharge

CM. Nandhini)

N. Wath

Dr. G. Balakrishnan, M.E., Ph.D.,

Principal

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

Assignment Answer Sheet

Name of the Student:

AU Register Number:

	Assignmen	t – 01	Date of Issue:	04.01.2019	Alarks	10
Course code	EC6601	Course Title	VLSI Design			
Year	113	Semester/Section	VI/ B	Date of Submission:	11.01.2	019

Q.No	Questions	CO
1	Explain the characteristics of Pass Transistor and Transmission gate	C304.2
2	Explain the static and dynamic power dissipation	C304.2

Mark Allocation

Rubrics	Marks Attocated	Marks obtained
Content Quality	6	5
Presentation Quality	2	1
Timely submission	2	2
Total marks	10	8

M. Wardin Name and Signature of the Faculty Incharge

TN A	
Register Number:	

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi and affiliated to Appa University Channelli

	Internal Assessi	nent Exam - I	Date/Session	ed to Anna Uni	versity,	, Chenna	ai)
Course code EC6601 Regulation 2022		Course Title		24.01.2019 Marks		iarks 5	
		Duration	VLSI DESIGN				
Year III		Semester	90 minutes	Academic Y	'ear	2018-19	
COURS	E OUTCOMES	Deidester	VI	Department	1	ECE	
COI:	In depth knowledge	of MOS technology				1	
CO2:	Explain the Combina	tional Logic Circuits and	Dosign Date 1 1				
CO3:	Explain Sequential	Logic Circuits and Clocki	ng Stratesian				
CO4:	Explain the Memory	architecture and buildin	a blooks				
CO5:	Apply the ASIC Des	ign Process and Testing	E DIOCKS				
CO6:	Design using Program	nmable Devices (ROM, P	LA EDCA				

Q.No.	Question	100	1 -
	PART A	CO	В
1	Define Elmore constant (Answer all the Questions 10 x 2 = 20 Marks)		
2		CO2	K1
3	Give the different symbols for transmission gate.	CO2	K1
4	What are the methods available to reduce dynamic power dissipation?	CO2	K3
5	Draw 2 input XNOR gate using nmos pass transistor	CO2	KI
6	What is meant by domino and pseudo nmos logic	CO2	KI
7	Implement a 2:1 multiplexer using pass transistor	CO2	KI
	Draw 2 input XOR gate using nmos pass transistor	CO2	К3
8	What is transmission gate?	CO2	KI
9	List the sources of static and dynamic power dissipation	CO2	K3
10	What is dynamic power dissipation?	CO2	KI
la	PART B (Answer all the Questions 2 x 10 = 20 Marks)		
18	Discuss in detail about RC delay model and Elmore delay model	CO2	K2
16	OR Explain in detail with neat diagram about SFPL &CVSL	CO2	К3
2a	Write neat diagram for an expression Y=(AB+(C+D)(DE)'	CO2	K1
	OR	COZ	14.1
2b	Write neat diagram for an expression Y=(A+B)+(C+D)(D+E)'	CO2	K2
	PART C (Answer all the Questions 1 x 10 = 10 Marks)		
a	Realize a 2 input NOR gate using static CMOS logic, Domino logic and pseudo nmos logic (or)	CO2	K3
	OR		
b	Design a half adder using static CMOS logic Design a 4:1 MUX using 2:1 MUX. Realize it using transmission gate.	CO2	K4

M. Would'
Course Faculty

(Name /Sign / Date)

M. Mandrini 24/1/2019 Dr. G. Balakrishnan, M.E., Ph.D.,

Principal

Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012. Negh

(Name /Sign / Date)

N. Vaijayanthi

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 622 012, India (Approved by AICTE, New Delhi and affiliated to Anna University, Chennai)

Internal Assessment Test Answer Book

Name	S. Anushya			Year/ Semester/Se	ction	11	VI
Batch No.	81121610600	Date/Session	24.01.19 Department			E	CE
Course code	E 12 6601	Course Title	VLST	Design	~] —	
Internal Assessment Test IAT 1		The state of the s	MAT3	Mode	el		
Name and Signature of the Invigitator with date			M. Bhuv	aneshwani*			

	Part	A		1	Part B / Pa	rt C		
Q. No.	1	Marks	Q. NO.	1	а	1	b	Total Marks
~		24/8/8/1 (6/2)	Q. 140.		Marks		Marks	
1		1	11		00			
2		1	12		7			
3		2	13				8	
4		2	14					
5		2.	15					
6		1	16					
7		2					Total	24
8		-			,			
9		2	الح	8	150			(h)
10		J		-	130		M. Har	(M Non
Total		14	Grai	nd T	otal	of	Name and ! the Examin	M. Nanc Signature er with date

Course Outcomes	1	10 be fil	led by the	examiner			
		2	3	4	5	6	Total
Marks allotted		50					
Marks Obtained		20					-
Try	to sel	- high	Mar	ks.		Name and of the IQA	P5ignatur

Dr. G. Balakrishnan, M.E., Ph.D., Principal

Indra Ganesan College of Engineering
JG Valley, Madurai Main Road
No. 2004. 20012.

INDRA GANESAN COLLEGE OF ENGINEERING IG VALLEY, MANIDANDAM, TIRUCHIRAPPALLI – 620012 DEPARTMENT OF ECE

CADEMIC YEAR 2018 – 2019 (EVEN SEMESTER) STUDENTS MARK STATEMENT- CO BASED

CYCLE TEST-II

SUBJECT CODE &TITLE:

EC6601 & VLSI DESIGN

YEAR/SEM: III/VI

MONTH & YEAR:01/2019

				& YEAR	TOTAL	
				Retest	TOTAL	TOTAL
S.NO	REG NO	STUDENT NAME	CO2	CO2	60	(100)
1	Abarna T	811216106001	40		40	67
2	Amsavalli S	811216106002	52		52	87
3	Anushya S	811216106003	42		42	70
4	Arockia Nivetha S	811216106004	38		38	63
5	Ashefa N	811216106005	35		35	58
6	Dhanalakshmi T	811216106006	AB	35	35	58
7	Femina Begum A	811216106008	38		38	63
8	Gayathri J	811216106009	35		35	58
9	Joysefshiba J	811216106010	32		32	53
10	Keerthana P	811216106011	48		48	80
11	Keerthana S	811216106012	40		40	67
12	Keerthika D	811216106013	38		38	64
13	Lathasri S	811216106014	48		48	80
14	Menaka R	811216106015	52		52	87
15	Mithra P	811216106016	32		32	53
16	Mohan Raj S	811216106017	35		35	58
17	Nilavar Nisha F	811216106018	32		32	53
18	Pavithra P	811216106019	8	30	30	50
19	Pavithra V	811216106020	40		40	67
20	Prabhu A	811216106021	45		45	75
21	Preetha M	811216106022	45		45	75
22	Prema S	811216106024	45		45	75
23	Raahul BN	811216106025	40		40	67
24	Ramya S	811216106026	45		45	75
25	Ruban Raj S	811216106027	48		48	80
26	Saranya M	811216106028	35		35	58
27 .	Saravanan S	811216106030	40		40	67
28	Shanakya P	811216106031	48		48	80
29	Sorna J	811216106032	35		35	58
30	Sudharsan K	811216106033	30		30	50
31 3	Suvathi R	811216106034	42		42	70
32 5	Swathi S	811216106035	48		48	80
33	Jdaya Rani K	811216106036	30		30	50
34	/ettai P	811216106037	35		35	58

Dr. G. Balakrishnan, M.E., Ph.D.,

Principal

Indra Ganesan College of Engineering IG Valley, Madurai Main Road

ten Trichinera na

MARKS RANGE:

<20	20-30	31-40	41-50	51-60	61-70	71-80	81-90	91-100
			03	10	10	9	2	

Total No. of Candidates Present	33
Total No.of Candidates Absent	01
Total No.of Students Pass	32
Total No. of Students Fail	01
Percentage of Pass	98

STAFF INCHARGE

Dr. G. Balakrishnan, M.E., Ph.D. Principal Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25) IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu - 620 012, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ROOT CAUSE ANALYSIS

:Ms.M.Nandhini Name of the Faculty Degree & Program

B.E &ECE IA Test

% : 100

Target

S.NO

ri

Course Code & Name : EC 6601& VLSI Design :VI&B Semester & Section

University Exam/Month & Year: APR-MAY 2019 Achieved

REMARKS OF THE HOD MONITORED MONITORED FOLLOWUP PROGRESS PROGRESS STATUS ACTION TAKEN PREVENTIVE ADVISED ADVISED ACTION TAKEN CORRECTIVE RETEST RETEST SIGNATURE WITH DATE STUDENT OF THE WENT TO DEATH CAUSES FOR FAILURE FEVER. DHANALAKSHMI T NAME OF THE STUDENT PAVITHRA P 811216106006 811216106019 BATCH NO

Signature of the Faculty Member

M. Nandhinks

Indra Ganesan College of Engineering Dr. G. Baldkrishnan, M.E., Ph.D., IG Valley, Madurai Main Road Manikandam, Trichy-620 012. Principal

Signature of the HoD/ECE

IG Valley, Manikandam, Tiruchirappalli, Tamit Nadu - 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25) 10101-1-1-1-1-1

			IVA	C Acade	mic A	udit	. Fo	rm			artises of the state of the same
NI.	The of Draw		ADEMIC YI			10 40	16				1 4 4 4
	Name of Department : ECE Year Details of Examination : IA Test -1 / I.			r/Sem/Sec	No. of Students Registered : 120						
S.No.	800	Course: Code List of Reg. No Verified		Course Log Book Verified (Y / N)	Course File Vertiled (Y / N)	1			Pass %	Remarks	
1.	MG1851			4	4 5		01	8	84	Try to get	
2.	(56303	8112	811219106005		4	51	_	4	92 Prese		sentati
3	(2622)	811216106013		4	4	50	1	5	90	Content	
4	EC 6601	811216106025		4	Y	50	١	1	98	Presentation	
5			1106026	4	4	48	3	4	92	122 to 8ct	
6.	ECP001	81121	6106030	4	4	51	-	3	94	Pass p	
				Verifi	ied by						
Exte	ernal Membe	er Name an	d Signature:	N. Vari							
Inte	rnal Membe	r Name an	d Signature:	M. Na	ndhi v	J					
)vera	li Remarks:				244						

N. Vaggthi

Dr. G. Balakrishnan, M.E., Ph.D.,

Principal

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu – 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

Identification of Curricular Gap & Content Beyond Syllabus(CBS) Material

Scan-Based Techniques

The controllability and observability can be enhanced by providing more accessible logic nodes with use of additional primary input lines and multiplexors. However, the use of additional I/O pins can be costly not only for chip fabrication but also for packaging. A popular alternative is to use scan registers with both shift and parallel load capabilities. The scan design technique is a structured approach to design sequential circuits for testability. The storage cells in registers are used as observation points, control points, or both. By using the scan design techniques, the testing of a sequential circuit is reduced to the problem of testing a combinational circuit.

In general, a sequential circuit consists of a combinational circuit and some storage elements. In the scan-based design, the storage elements are connected to form a long serial shift register, the so-called scan path, by using multiplexors and a mode (test/normal) control signal, as shown in Fig. 1.

In the test mode, the scan-in signal is clocked into the scan path, and the output of the last stage latch is scanned out. In the normal mode, the scan-in path is disabled and the circuit functions as a sequential circuit. The testing sequence is as follows:

Step 1: Set the mode to test and, let latches accept data from scan-in input.

Step 2: Verify the scan path by shifting in and out the test data.

Step 3: Scan in (shift in) the desired state vector into the shift register.

Step 4: Apply the test pattern to the prim ary input pins.

Step 5: Set the mode to normal and observe the primary outputs of the circuit after sufficient time for propagation.,

Step 6: Assert the circuit clock, for one machine cycle to capture the outputs of the combinational logic into the registers.

Step 7: Return to test mode; scan out the contents of the registers, and at the same time scan in the next pattern.

Step 8: Repeat steps 3-7 until all test patterns are applied.

Dr. G. Balakrishnan, M.E., Ph.D.,

Principal

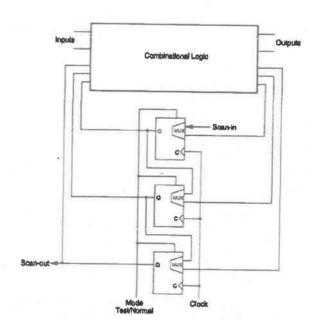
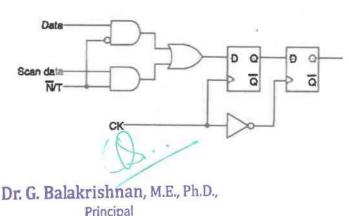



Figure 1: The general structure of scan-based design

The storage cells in scan design can be implemented using edge-triggered D flipflops, master-slave flip-flops, or level-sensitive latches controlled by complementary clock signals to ensure race-free operation. Figure 2 shows a scan-based design of an edge-triggered D flip-flop. In large high-speed circuits, optimizing a single clock signal for skews, etc., both for normal operation and for shift operation, is difficult. To overcome this difficulty, two separate clocks, one for normal operation and one for shift operation, are used. Since the shift operation does not have to be performed at the target speed, its clock is much less constrained.

An important approach among scan-based designs is the level sensitive scan design (LSSD), which incorporates both the level sensitivity and the scan path approach using shift registers. The level sensitivity is to ensure that the sequential circuit response is independent of the transient characteristics of the circuit, such as the component and wire delays. Thus, LSSD removes hazards and races. Its ATPG is also simplified since tests have to be generated only for the combinational part of the circuit.

Principal
Indra Ganesan College of Engineering
IG Valley, Madural Main Roam
Manikandam, Trichy-62000

Figure 2 : Scan-based design of an edge-triggered D flip-flop

The boundary scan test method is also used for testing printed circuit boards (PCBs) and multichip modules (MCMs) carrying multiple chips. Shift registers are placed in each chip close to I/O pins in order to form a chain around the board for testing. With successful implementation of the boundary scan method, a simpler tester can be used for PCB testing.

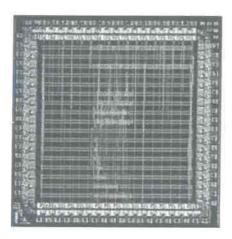
On the negative side, scan design uses more complex latches, flip-flops, I/O pins, and interconnect wires and, thus, requires more chip area. The testing time per test pattern is also increased due to shift time in long registers

Application-specific integrated circuit

An application-specific integrated circuit (ASIC /'eisik/) is an integrated circuit (IC) chip customized for a particular use, rather than intended for general-purpose use, such as a chip designed to run in a digital voice recorder or a high-efficiency videocodec. Application-specific standard product chips are intermediate between ASICs and industry standard integrated circuits like the 7400 series or the 4000 series.

[1] ASIC chips are typically fabricated using metal-oxide-semiconductor (MOS) technology, as MOS integrated circuit chips.

[2]As feature sizes have shrunk and chip design tools improved over the years, the maximum complexity (and hence functionality) possible in an ASIC has grown from 5,000 logic gates to over 100 million. Modern ASICs often include entire microprocessors, memory blocks including ROM, RAM, EEPROM, flash memory and other large building blocks.


Such an ASIC is often termed a SoC (system-on-chip). Designers of digital ASICs often use a hardware description language (HDL), such as Verilog or VHDL, to describe the functionality of ASICs.

[1]Field-programmable gate arrays (FPGA) are the modern-day technology improvement on breadboards, meaning that they are not made to be application-specific as opposed to ASICs. Programmable logic blocks and programmable interconnects allow the same FPGA to be used in many different applications. For smaller designs or lower production volumes, FPGAs may be more cost-effective than an ASIC design, even in production. The non-recurring engineering (NRE) cost of an ASIC can run into the millions of dollars. Therefore, device manufacturers typically prefer FPGAs for prototyping and devices with low production volume and ASICs for very large production volumes where NRE costs can be amortized across many devices.

Gate-array and semi-custom design

Dr. G. Balakrishnan, M.E., Ph.D.,

Principal

Microscope photograph of a gate-array ASIC showing the predefined logic cells and custom interconnections. This particular design uses less than 20% of available logic gates.

Gate array design is a manufacturing method in which diffused layers, each consisting of transistors and other active devices, are predefined and electronics wafers containing such devices are "held in stock" or unconnected prior to the metallization stage of the fabrication process. The physical design process defines the interconnections of these layers for the final device. For most ASIC manufacturers, this consists of between two and nine metal layers with each layer running perpendicular to the one below it. Non-recurring engineering costs are much lower than full custom designs, as photolithographic masks are required only for the metal layers. Production cycles are much shorter, as metallization is a comparatively quick process; thereby accelerating time to market.

Gate-array ASICs are always a compromise between rapid design and performance as mapping a given design onto what a manufacturer held as a stock wafer never gives 100% circuit utilization. Often difficulties in routing the interconnect require migration onto a larger array device with a consequent increase in the piece part price. These difficulties are often a result of the layout EDA software used to develop the interconnect.

Pure, logic-only gate-array design is rarely implemented by circuit designers today, having been almost entirely replaced by field-programmable devices. The most prominent of such devices are field-programmable gate arrays (FPGAs) which can be programmed by the user and thus offer minimal tooling charges, non-recurring engineering, only marginally increased piece part cost, and comparable performance.

Today, gate arrays are evolving into structured ASICs that consist of a large IP core like a CPU, digital signal processor units, peripherals, standard interfaces, integrated memories, SRAM, and a block of reconfigurable, uncommitted logic. This shift is largely because ASIC devices are capable of integrating large blocks of system functionality, and systems on a chip (SoCs) require glue logic, communications subsystems (such as networks on chip), peripherals, and other components rather than only functional units and basic interconnection.

Dr. G. Balakrishnan, M.E., Ph.D.,

In the frequent usages in the field, the terms "gate array" and "semi-custom" are synohymous when referring to ASICs. Process engineers more commonly use the term "semi-custom", while "gate-array" is more commonly used by logic (or gate-level) designers.

Dr. G. Balakrishnan, M.E., Ph.D.,

Principal