
 Indra Ganesan

CロLLEGE ロF ENGINEERING

Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai Accredited by NAAC with 'B+' Grade, 2(f) \& 12B Status Institution by UGC

IG Valley, Madurai Main Road, Manikandam, Tiruchirappalli - 620012

NAAC DOCUMENTS

QUALITY INDICATOR FRAME WORK

CRITERION - 1

CURRICULAR ASPECTS

SUBMITTED BY IOAC
INTERNAL QUALITY ASSURANCE CELL INDRA GANESAN COLLEGE OF ENGINEERING

Indra Ganesan CロLLEGE DF ENGINEERING
Madurai Main Road (NH-45B), Manikandam, Tiruchirappalli - 620012 Approved by AICTE, NewDelhi \& Affiliated to Anna University, Chennai NAAC Accredited, $2(F)$ Status Institution by UGC

Criteria 1

1.1 Curricular Planning and Implementation (20)

1.1.1 The Institution ensures effective curriculum planning and delivery through a well-planned and documented process including Academic calendar and conduct of continuous internal Assessment

Table of Content

S. No	Description
1.	Preface of the Course File
2.	Review of Course File
3.	Faculty Time Table
4.	Course Plan
5.	Course Committee Meeting
6.	Content Beyond Syllabus
7.	Rubrics Base Evaluation
8.	Academic Audit Form
9.	Student Feed Back on Faculty
10.	Internal Assessment Schedule
11.	Question Paper
12.	Answer Key
13.	Sample Answer Sheet
14.	Co Based Mark Entry
15.	Root Cause Analysis
16.	Retest Question Paper
17.	Retest Sample Answer Sheet
18.	Retest Co Based Mark Entry

INDRA GANESAN COLLEGE OF ENGINEERING

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu - 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PREFACE OF THE COURSE FILE

Batch : 2021-2025
Academic Year
: 2022-2023 / ODD
Program
: COMPUTER SCIENCE AND ENGINEERING
Year \& Semester
$: 2^{\text {nd }}$ Year $/ 3^{\text {rd }}$ Semester
Course Code
: CS 3352
NBA Course Code: C203
Name of the Course : Foundations of Data Science
Faculty in-charge :T. Sugashini AP / CSE

Signature of the Faculty in-charge

HoD / CSE

INDRA GANESAN COLLEGE OF ENGINEERING

(Approved by AICTE, New Delhi and affiliated to Anna University, Chennai)
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
REVIEW OF COURSE FILE
(to be pasted on the inner side of the file-backside).(\#-State Yes/No.)

S.N	Details Date:	R-I-*	R-II-*\&	$\underset{* \&}{\text { R-III- }}$	$\begin{aligned} & \text { R-IV- } \\ & * \& \$ \end{aligned}$	$\begin{aligned} & \mathrm{R}-\mathrm{V} \\ & * \& \$(\omega \end{aligned}$
1.	Preface of the course file	Y				
2.	Vision, Mission, PEOs, POs, PSOs, Blooms taxonom:	y				
3.	Subject handlers of yesteryears	Y				
4.	Timetable/Workload of the staff - Distribution of teaching load-Roles and Responsibilities	Y				
5.	Syllabus signed by staff \& HoD	Y				
6.	Lecture Schedule signed by staff \& HoD	y				
7.	Course Committee meeting circular and minutes	4				
8.	Identification of Curricular gap and Content Bey ond the syllabus	y				
9.	Self-study topics	Y				
10.	Previous AU Question papers	y				
11.	Unit wise Q\&A and Objective type questions	y				
12.	Unit wise course material		Y	4	Y	
13.	Assigrment question paper with sample answer sheets and mark entry		4	Y	Y	
14.	Tutorial question paper with key and mark entry		Y	y	y	
15.	Class test/IA test Q Paper with Key, sample answer papers and mark entry		Y	4	Y	
16.	IA Test- result analysis-CAP-evidence-root cause analy sis.		Y	4	Y	
17.	Retest - Q paper-Attendance-marks		Y	4	Y	
18.	AU Web portal entry sheet		y	Y	Y	
19.	Very poor performance in first two tests-action taken-communication to parents-evidence			y	Y	
20.	Absence for two tests-action taken-commumication to parents-evidence.			Y	y	
21.	Indiscipline of student reported, if any					
22.	Special class/coaching class/remedial class/attendance-CAP		y	y	y	
23.	Conduct of Seminar, Quizzes - proof					
24.	Content beyond the syllabus - proof					Y
25.	Student feedback on faculty					V
26.	Course end survey					y
27.	Internal Assessment sheet					y
28.	AU question paper with students feedback					y
29.	Discrepancy of the question paper and correspondence, if any					Y
30.	AU result analysis-Details of arrear students.					Y
31.	AU grade sheet					H
32.	CO-PO \& PSO attainment sheet					*
	Signature of Course handling faculty	oos	$2 d b$	25	cer	sodx
	Signature of HoD	Gudel	fut	Wull	Tande	Vend

Dr. G. Balakrishnan, M.E., Ph.D.,
Principal
Indra Ganesan College of Engineering
IG Valley, Madurai Main Road
Manikandam, Trichy-620 012.

INDRA GANESAN COLLEGE OF ENGINEERING
 IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu - 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING
Faculty Time Table

D. Thu ld

HOD/CSE

Dr. G. Balakrishnan, M.E., PhD.,
Principal
Indra Ganesan College of Engineering
1G Valley, Madurai Main Road
Manikandam, Trichy-620 012.

COURSE OBJECTIVES:

* To understand the data science fundamentals and process.
- To learn to describe the data for the data science process.
- To learn to describe the relationship between data.
- To utilize the Python libraries for Data Wrangling.
- To present and interpret data using visualization libraries in Python UNIT I

INTRODUCTION
Data Science: Benefits and uses - facets of data - Data Science Process: Overview -- Defining research goals - Retrieving data - Data preparation - Exploratory Data analysis - build the model- presenting findings and building applications - Data Mining - Data Warehousing - Basic Statistical descriptions of Data

UNIT II

DESCRIBING DATA
Types of Data - Types of Variables -Describing Data with Tables and Graphs -Describing Data with Averages - Describing Variability - Normal Distributions and Standard (z) Scores
UNIT III
DESCRIBING RELATIONSHIPS
Correlation -Scatter plots -correlation coefficient for quantitative data -computational formula for correlation coefficient - Regression -regression line -least squares regression line - Standard error of estimate - interpretation of r 2 -multiple regression equations -regression towards the mean
UNIT IV
PYTHON LIBRARIES FOR DATA WRANGLING
Basics of Numpy arrays -aggregations -computations on arrays -comparisons, masks, boolean logic fancy indexing - structured arrays - Data manipulation with Pandas - data indexing and selection operating on data - missing data - Hierarchical indexing - combining datasets - aggregation and grouping - pivot tables

UNIT V DATA VISUALIZATION

Importing Matplotilb - Line plots - Scatter plots - visualizing errors - density and contour plots Histograms - legends - colors - subplots - text and annotation - customization - three dimensional plotting - Geographic Data with Basemap - Visualization with Seabom.

COURSE OUTCOMES:

At the end of this course, the students will be able to:
CO1: Define the data science process
CO2: Understand different types of data description for data science process
CO3: Gain knowledge on relationships between data
CO4: Use the Python Libraries for Data Wrangling CO5: Apply visualization Libraries in Python to interpret and explore data

TOTAL: 45 PERIODS

TEXT BOOKS

1. David Cielen, Arno D. B. Meysman, and Mohamed Ali, "Introducing Data Science", Manning Publications, 2016. (Unit I)
2. Robert S. Witte and John S. Witte, "Statistics", Eleventh Edition, Wiley Publications, 2017. (Units II and III)
3. Jake VanderPlas, "Python Data Science Handbook", O'Reilly, 2016. (Units IV and V)

REFERENCES:

1. Allen B. Downey, "Think Stats: Exploratory Dafa Analysis in Python", Green Tea Press, 2014.

Dr. G. Balakrishnan, M.E., Ph.D., Principal
 Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

INDRA GANESAN COLLEGE OF ENGINEERING

IG Valley, Manikandam, Tiruchirappali, Tamil Nadu - 620 012, India (Approved by AICTE, New Delhi, Affliated to Anna University, Chennai-25)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Lecture Schedule

Degree/Program: B.E / CSE
Duration: 2022-2023 ODD SEM

Course code \&Name: CS3352 - Foundations of Data Science
Semester: III Faculty: T. Sugashini

AlM:
To encourage the students to solve real-world data-science problems and build applications in this field.

OBJECTIVES:

To impart knowledge on
(i) To study the data science fundamentals and familiarize with the data science process.
(ii) To familiarize describing data with tables, graphs, averages, and variability and converting the values from the normal distribution into z scores.
(iii)To study the data to describe the relationship by examining the form, direction, and strength of the association by quantitatively and qualitatively.
(iv)To apply the Python libraries for Data Analysis and Data Science, which involves data sorting or filtration and data grouping.
(v) To study visualization libraries in Python to create customized data along with its libraries, graphs, charts, and histogram
PREREOUSITES: Problem Solving and Python Programming, Problem Solving and Python Programming Laboratory, Statistics and Numerical Methods

COURSE OUTCOMES:

After the course, the student should be able to:

CO	Course Ontcomes	POs	PSOS
C203.1	Explain the data science process and the basic concept of data science fundamentals	1,2,3,4,12	1,2
C203.2	Illustrate to convert the values from the normal distribution into z scores using data with tables. graphs, averages, and variability	1,2,3,4,12	1,2
C203.3	Examine the data to describe the relationship by examining the form, direction, and strength of the association by quantitatively and qualitatively.	3,4	1,2
C203.4	Examine the Numpy libraries to perform a wide variety of high-level mathematical functions that operate on the arrays and matrices.	1,2,3,4,12	1,2
C203.5	Examine the Pandas libraries for analyzing, cleaning, exploring and manipulating data.	1,2,3,4,12	1,2
C203.6	Explain the visualization libraries in Python to identify patterns, trends, and outliers in large data sets along with its libraries, graphs, charts, and histogram	1,2,3,4,12	1,2

Dr. G. Balakrishnan, M.E., Ph.D.,
Principal
Indra Ganesan College of Engineering IG Valley, Madurai Main Road
Manikandam, Trichy-620 012.

Dr. G. Balakrishnan, M.E., Ph.D.,
Principal
Indra Ganesan College of Engineering
IG Valley, Madurai Main Road
Manikandam, Trichy-620 012.

41	$17 \cdot 11-22$	2	Colors - Subplots	$\mathrm{R} 3 / \mathrm{BB}$
42	$18 \cdot 11 \cdot 22$	4	Text and annotation	$\mathrm{R} 2 / \mathrm{BB}$
43	$21 \cdot 11.22$	2	Customization - Three-dimensional plotting	T / BB
44	$23 \cdot 11.22$	4	Geographic Data with Basemap	$\mathrm{T} 1 / \mathrm{BB}$
45	2411.22	2	Visualization with Seaborn	$\mathrm{T} 1 / \mathrm{BB}$
	Content Beyond the Syllabus			
46	$2511-22$	2	Visual Aids for EDA	Material

Book Reference - Text Books

	Title of the Book	Author	Publisher	Year
1.	Introducing Data Science	David Cielen, Arno D. B. Meysman, and Mohamed Ali	Manning Publications	2016
2.	Statistics	Robert S. Witt and John S. Witt	Eleventh Edition, Wiley Publications	2017
3.	Python Data Science Handbook	Jake VanderPlas	O'Reilly	2016

Book Reference - References			Author
Tl.	Title of the Book	Publisher	Year
1.	Think Stats: Exploratory Data Anal sis in Python	Allen B. Downey	Green Tea Press

Website Reference:

https:/faptel,ac,in/courses/106106179
https://www.udemy.com/course/the-data-science-course-complete-data-science-bootcamp/

Signature of the Faculty in-charge

$\mathrm{HoD} / \mathrm{CSE}$

Dr. G. Balakrishnan, M.E., PhD.
Principal
Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

INDRA GANESAN COLLEGE OF ENGINEERING
 IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu - 620 012, India
 (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Ref: SBECW/ CSE/ Course committee meeting / FDS-I/ 2021 - 2022 (ODD)
DATE: 17.08.20222

COURSE COMMITTEE MEETING-CS3352-FOUNDATIONS OF DATA SCIENCE

ACADEMIC YEAR: 2022-2023 (ODD) SEM: 03 REGULATION: 2021
PROGRAM: CSE DATE OF MEETING: 17.08.2022 TIME: 10.00 AM Venue: RDBMS LAB
Members Present
Table. 1 Course committee members

S.No.	Name of the faculty \& Desiguation, Program	Sem/Program	Signature
1.	T. Sugashini, APICSE - Course coordinator	III SEM / CSE	\bigcirc
2.	R Nivethas AP/TT	III SEM / TT	${ }_{4}$

HOD welcomed all the members present

1. Content of syllabus, unit wise discussed. Nature of qualitative, quantitative, problematic, theoretical concepts etc. have been discussed
2. With reference to the R-2021 regulation, Number of periods per unit $=9$, total number of periods $=45$ periods.
3. Vision and mission of the college, department discussed. POs, PEOs, PSOs discussed.
4. Course outcomes defined for each units, considering learning outcomes.

CO	Course Outcomes	POS	PSOS
C 203.1	Explain the data science process and the basic concept of data science fundamentals	1,2,3,4,12	1,2
C203.2	Illustrate to convert the values from the normal distribution into z scores using data with tables, graphs, averages, and variability	1,2,3,4,12	1.2
C203.3	Examine the data to describe the relationship by examining the form, direction, and strength of tie association by quantitatively and qualitatively.	1,2,3,4,12	1,2
C203.4	Examine the Numpy litraries to perform a wide variety of high-level mathematical functions that operate on the arrays and matrices.	1,2,3,4,12	1,2
C203.5	Examine the Pandas libraries for analyzing, cleaning, exploring, and manipulating data.	1,2,3,4,12	1,2
C203.6	Explain the visualization libraries in Python to identify patterns, treads, and outliers in large data sets along with its libraries, graphs, charts, and histogram	1,2,3,4,12	1,2

5. Mapping of COs with POs and PSOs is done with suitable correlation levels(l for low, 2 for medium, 3 for high," "-" for no correlation, before content beyond syllabus)

Table. 3 Mapping of COs, C, PSOs with POs- before CBS.

Course	POI	PO2	P03	PO4	pOS	P06	PO7	PO8	P09	POIO	POIl	PO12	PSOL	PSO2
C203. 1	3	2	1	1	-	-	-	-	-	-	-	1	2	2
C203,2	3	2	1	1	-	-	\checkmark	-	-	-	-	1	2	2
C203.3	3	2	1	1	-	-	-	-	-	-	-	1	2	2
C203.4	3	2	1	1	-	-	-	-		-		1	2	2
0203.5	3	2	1	1	-	-	-	-	-	-	-	1	2	2
C203. 6	3	2	1	,	-	-	-	-	-	-		1	2	2
C203	3	2	1	1	-	-	-	-	-	\cdots		1	2	2

6. Identification of content beyond syllabus- curricular gaps are identified considering industry needs, employers feedback, alumni feedback, government policy on industrialization, new investments by privatel public sectors, societal needs and level of correlation of CO with POs and PSOs. Accordingly the details of CBS added and its correlation is given below.

Dr. G. Balakrishnan, M.E., Ph.D., Principal
Indra Ganesan College of Engineering
IG Valley, Madurai Main Road
Manikandam, Trichy-620 012.

Table. 4 Identification of content bey and syllabus

Content beyond syllabus added	POs strengthened/Vacant filled	CO/Unit
Visual Aids for EDA	POS 12 Vacant filled	C203.1\& C203.3/\&\& V

7. Mapping of COs with POs , PSOs- after CBS.

Table. 5 Mapping of COs, C, PSOs with POs-atter CBS.

8. Content beyond syllabus is thus identified based on the above. Plan for handling of CBS by internal/external resource person/ industrial visits are decided. This will be included in the class log book.
9. Lecture schedule should be prepared unit wise, as in the syllabus. Number of periods per unit and total number of periods planned should not be less than, periods allotted in the syllabus of Anna University.
10. Plan for additional Periods for CAT tests, CBS, NPTEL delivery, Seminar, Quiz etc are to be incorporated in the lecture schedule. These periods are added exclusive of number of periods prescribed in the syllabus.
11. Plan for at least three assignments (with level of correlation), seminar topic discussed.
12. Bright students and slow learners are to be identified, immediately after CAT test $-I$. such students may be counselled suitably and the evidence for counselling to be recorded in the attendance cum assessment record. (Sign of students with date and time of counselling, to be strictly recorded and to be attached in the course file). Such counselling may be conducted after college hours.
13. For those students secured less than 60% in the CAT Test, Retest should be conducted. Correspondingly root cause analysis for reasons of failure, corrective and preventive action, and follow up action taken should be filed properly.
14. Contents of course file to be reviewed periodically.
15. Lecture schedule, assignment questions, tutorial questions, course materials, AU questions (at least 5) should be supplied within one week after the commencement of classes.
16. Course material should be uploaded in the college website for student's reference.
17. Discrepancy in question paper, if any to be informed to the controller of examinations through web portal entry, after getting approval from the HoD \& the Principal. Critically asked questions, if any to be discussed with the students of the next batch.
18. Immediately after the publication of the results, analysis are to be carried out and follow up action to be taken for the failures.
19. IA test question papers should be set as per the norms of the college, incorporating marks for learning outcomes and course outcomes. Common question papers should be set.
20. Certificate courses/Workshop/guest lectures may be planned inviting experts from industry/higher leaning institutions.
21. CAT test papers, assignment papers or any other papers submitted by the students, should be returned to the students within 5 days after correction. Sample paper should be suitably filed.
22. Long absentees of students if any to be informed to the parents through class coordinator, if such students attendance less than 75%.

Dr. G. Balaktis shan, M.E., Ph. D.

HoD/CSE

INDRA GANESA COLLEGE OF ENGINEERING

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu-620012, India
(Approved by AICTE, New Delhi, Affiliated to Anna University, Chenmai-25)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Identification of Curricular Gap \& Content Beyond Svllabus(CBS)

Name of the Faculty : T. Sugashini

Course Code \& Name: CS3352 - Foundations of Data Science
Degree \& Program:B.E./CSE Semester : III/ Academic Year: 2022-2023 /ODD

1. Mapping of Course Outcomes with POs \& PSOs.(before CBS)

Table. 1 Mapping of COs, C, PROs with POs - before CBS.

Course	POI	PO	PO	PO	POS	PO 6	PO 7	PO	PO	PO10	PO11	P012	PSO1	PSO2
C203.1	3	2	1	1	$* 2$	-	-	-	-	2	1	1	2	2
C203.2	3	2	1	1	-	-	-	-	-	2	1	1	2	2
C203.3	3	2	1	1	-	-	-	-	-	2	1	1	2	2
C203.4	3	2	1	1	-	-	-	-	-	2	1	1	2	2
C203.5	3	2	1	1	-	-	-	-	-	2	1	1	2	2
C203.6	3	2	1	1	2	-	-	-	-	2	1	1	2	2
C 203	3	2	1	1	$* 2$	-	-	-	-	2	1	1	2	2

II. Identification of content beyond syllabus.

Table. 2 Identification of content beyond syllabus

Details of Content Beyond Syllabus(CBS) added	POs strengthened/ vacant filled	CO/Unit
Visual Aids for EDA	POS(2) Vacant filled	C203.1 \& C203.3/I $\& V$

III. Mapping of Course Outcomes with POs \& SOs. (After CBS)

Table. 3 Mapping of COs, C, SOs with POs- after CBS.

Course	POI	PO	PO	PO	POS	PO	PO 7	PO	PO	POLO	PO11	PO12	PSO1	PSO2
C203.1	3	2	1	1	$* 2$	-	-	-	-	2	1	1	2	2
C203.2	3	2	1	1	-	-	-	-	-	2	1	1	2	2
C203.3	3	2	1	1	-	-	-	-	-	2	1	1	2	2
C 203.4	3	2	1	1	-	-	-	-	-	2	1	1	2	2
C 203.5	3	2	1	1	-	-	-	-	-	2	1	1	2	2
C 203.6	3	2	1	1	$* 2$	-	-	-	-	2	1	1	2	2
C 203	3	2	1	1	$* 2$	-	-	-	-	2	1	1	2	2

Signature of the Faculty

Dr. G. Ballaiknishnan, M.E., Ph.D., Principal
 Hod/CSE

INDRA GANESAN COLLEGE OF ENGINEERING

IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu-620012, India
(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SESSION AT SD LAB

Dr. G. Balakrishnan, M.E., Ph.D.,

1.2 Visual Aids for EDA

1.2.1 Introduction

The two important goals of data scientist would be to extract knowledge from the data and to present the data to stakeholders. Presenting results to stakeholders is very complex in the sense that the stakeholders may not have enough technical knowledge to understand programming terminologies and other technicalities. Hence, visual aids are very useful tools. The following are some of the visual aids for EDA.

- Line chart
- Bar chart
- Scatter plot
- Area plot and stacked plot
- Pie chart
- Table chart
- Polar chart
- Histogram
- Lollipop chart

1.2.2 Line chart

A line chart is a type of chart used to visualize the value of something over time. It is used to find trends in data over time. The chart consists of a horizontal x-axis and a vertical y-axis. Eg. The number of houses sold during various months of the year. The x -axis shows the time period whereas the y -axis shows the item that is being measured. A line chart clearly shows the increasing or decreasing trend of a particular item.

Line Chart

Simple Line Chart

A simple line chart is plotted with only a single line that shows the relationship between two different variables

Multiple Line Chart

A multiple line chart is a line chart that is plotted with two or more lines. When we need to show data about two or more variables that have varying data points depending on the period of time, a multiple line chart can be used. This type of line chart is also helpful when we need to compare data like temperatures, prices, etc. The image below shows the comparison of prices of Mercedez-Benz among three cities.

Example:

import matplotlib.pyplot as plt $\mathrm{x}=[1,2,3,4,5,6,7,8,9]$
$\mathrm{y} 1=[1,3,5,3,1,3,5,3,1]$
$\mathrm{y} 2=[2,4,6,4,2,4,6,4,2]$
plt.plot(x, y, label="line L")
plt.plot(x, y2, label="line H^{\prime})
plt.plot()
plt.xlabel("x axis")
plt.ylabel("y axis")
plt.title("Line Graph Example")
plt.legend()
plt.show()

1.2.3 Bar chart

This is one of the most common types of visualization. Bars can be drawn horizontally or vertically to represent categorical variables. Bar charts are frequently used to distinguish objects between distinct collections in order to track variations over time. In most cases, bar charts are very convenient when the changes are large.
import matplotlib.pyplot as plt \# The index 4 and 6 demonstrate overlapping cases.

```
x1 = [1, 3, 4, 5, 6, 7, 9]
y1 = [4, 7, 2, 4, 7, 8, 3]
x2 = [2, 4, 6, 8, 10]
y2 = [5, 6, 2, 6, 2]
plt.bar(x1, y1, label="Blue Bar", color='b')
plt.bar(x2, y2, label="Green Bar", color='g')
plt.plot()
plt.xlabel("bar number")
plt.ylabel("bar height")
plt.title("Bar Chart Example")
plt.legend()
plt.show()
```


1.2.4 Scatter plot

Scatter plots are also called scatter graphs, scatter charts, scattergrams, and scatter diagrams. They use a Cartesian coordinates system to display values of typically two variables for a set of data.
Scatter plots can be constructed in the following two situations:

- When one continuous variable is dependent on another variable, which is under the control of the observer.
- When both continuous variables are independent

There are two important concepts-independent variable and dependent variable. In statistical modeling or mathematical modeling, the values of dependent variables rely on the values of independent variables. The dependent variable is the outcome variable being studied. The independent variables are also referred to as regressors. The scatter plots are used when we need to show the relationship between two variables, and hence are sometimes referred to as correlation plots.
import matplotlib.pyplot as plt
$\mathrm{x} 1=[2,3,4]$
$\mathrm{y} 1=[5,5,5]$
$\mathrm{x} 2=[1,2,3,4,5]$
$\mathrm{y} 2=[2,3,2,3,4]$
$\mathrm{y} 3=[6,8,7,8,7]$
plt.scatter(x1, y1)
plt.scatter(x2, y2, marker='v', color='r')
plt.scatter(x2, y3, marker=' ${ }^{\prime}$ ', color='m')
plt.title('Scatter Plot Example')
plt.show()
Scatter Plot Example

Bubble chart

A bubble plot is a scatter plot where each data point on the graph is shown as a bubble. Each bubble can be illustrated with a different color, size, and appearance.

1.2.5 Area plot and stacked plot

An area plot is a line plot that shows the area covered under the line by filling it with a color. Several such plots can be stacked on top of one another, giving the feeling of a stack and hence the name stacked plot. The stacked plot can be useful when we want to visualize the cumulative effect of multiple variables being plotted on the y axis.
import matplotlib. pyplot as plt
$\mathrm{x}=[1,2,3,4,5,6,7,8,9]$
$\mathrm{y} 1=[23,40,28,43,8,44,43,18,17]$
$\mathrm{y} 2=[17,30,22,14,17,17,29,22,30]$
$\mathrm{y} 3=[15,31,18,22,18,19,13,32,39]$
\# Adding legend for stack plots is tricky.
plt.plot([], [], color='r', label = 'D 1')
plt.plot([], [], color='g', label = 'D 2')
plt.plot([], [], color='b', label = 'D 3')
plt.stackplot(x, y1, y2, y3, colors= ['r', 'g', 'b'])
plt.title('Stack Plot Example')
plt.legend()
plt.show()

1.2.6 Pie chart

A pie chart (or a circle chart) is a circular statistical graphic, which is divided into slices to illustrate numerical proportion. In a pie chart, the arc length of each slice and area is proportional to the quantity it represents. Pie charts are very widely used in the business world and the mass media. But, experts recommend avoiding them, as research has shown it is difficult to compare different sections of a given pie chart, or to compare data across different pie charts. Pie charts can be replaced in most cases by other plots such as the bar chart, box plot, dot plot, etc.
import matplotlib.pyplot as plt
labels = 'S1', 'S2', 'S3'
sections $=[56,66,24]$
colors $=[$ 'c', 'g', 'y']
plt.pie(sections, labels=labels, colors=colors,
startangle $=90$,
explode $=(0,0.1,0)$,
autopct $=$ ' $\% 1.2 \mathrm{f} \% \%$ ')
plt.axis('equal') \# Try commenting this out.
plt.title('Pie Chart Example')
plt.show()

1.2.7 Table chart

A table chart combines a bar chart and a table. In order to understand the table chart, let's consider the following dataset. Consider standard LED bulbs that come in different wattages. The standard Philips LED bulb can be 4.5 Watts, 6 Watts, 7 Watts, 8.5 Watts, 9.5 Watts, 13.5 Watts, and 15 Watts. Let's assume there are two categorical variables, the year and the wattage, and a numeric variable, which is the number of units sold in a particular year.
import numpy as np
import matplotlib.pyplot as plt
\# Years under consideration
years = ["2010", "2011", "2012", "2013", "2014"]
\# Available watt
columns $=[$ '4.5W', '6.0W', '7.0W','8.5W']
unitsSold $=[$
[65, 141, 88, 111],
[85, 142, 89, 112],
[75, 143, 90, 113],
[65, 144, 91, 114],
[55, 145, 92, 115],
]
\# Define the range and scale for the y axis
values $=n$ p.arange $(0,600,100)$
colors $=$ plt.cm. $\operatorname{OrRd}($ np.linspace $(0,0.7$, len(years) $))$
index $=\mathrm{np}$.arange $($ len $($ columns $))+0.3$
bar_width $=0.7$
y_offset = np.zeros(len(columns))
fig, ax = plt.subplots()
cell_text = []
n_rows $=$ len(unitsSold)
for row in range(n_rows):
plot $=$ plt.bar(index, unitsSold[row], bar_width, bottom=y_offset,
color=colors[row])
y_offset = y_offset + unitsSold[row]
cell_text.append(['\%1.1f' \% (x) for x in $\left.\left.y _o f f s e t\right]\right)$
\# Add a table to the bottom of the axes
the_table $=$ plt.table(cellText=cell_text, rowLabels=years,
rowColours=colors, colLabels=columns, loc='bottom')
plt.ylabel("Units Sold")
plt.xticks([])
plt.title('Number of LED Bulb Sold/Year')
plt.show()

1.2.8 Polar chart

A polar chart is a diagram that is plotted on a polar axis. Its coordinates are angle and radius, as opposed to the Cartesian system of x and y coordinates. Sometimes, it is also referred to as a spider web plot. Let's see how we can plot an example of a polar chart.
First, let's create the dataset:

1. Let's assume there are five courses in the academic year:
subjects = ["C programming", "Numerical methods", "Operating
system", "DBMS", "Computer Networks"]
2. And a student obtained the following grades in each subject: plannedGrade $=[90,95,92,68,68,90]$
3. However, after final examination, these are the grades that the student got: actualGrade $=[75,89,89,80,80,75]$
Now that the dataset is ready, let's try to create a polar chart. The first significant step is to initialize the spider plot. This can be done by setting the figure size and polar projection. Note that in the preceding dataset, the list of grades contains an extra entry. This is because it is a circular plot and we need to connect the first point and the last point together to form a circular flow. Hence, we copy the first entry from each list and append it to the list. In the preceding data, the entries 90 and 75 are the first entries of the list respectively. Let's look at each step:
4. Import the required libraries: import numpy as np import matplotlib.pyplot as plt
5. Prepare the dataset and set up theta:
theta $=$ np.linspace $(0,2 *$ np.pi, len(plannedGrade) $)$
6. Initialize the plot with the figure size and polar projection:
plt.figure $($ figsize $=(10,6))$
plt.subplot(polar=True)
7. Get the grid lines to align with each of the subject names:
(lines,labels) $=$ plt.thetagrids $($ range $(0,360$, $\operatorname{int}(360 / l \mathrm{len}($ subjects))), (subjects))
8. Use the plt.plot method to plot the graph and fill the area under it: plt.plot(theta, plannedGrade) plt.fill(theta, plannedGrade, 'b', alpha=0.2)
9. Now, we plot the actual grades obtained: plt.plot(theta, actualGrade)
10. We add a legend and a nice comprehensible title to the plot: plt.legend(labels=('Planned Grades','Actual Grades'),loc=1) plt.title("Plan vs Actual grades by Subject")
11. Finally, we show the plot on the screen: plt.show()
The generated polar chart is shown in the following screenshot:

1.2.9 Histogram

A histogram is the graphical representation of data where data is grouped into continuous number ranges and each range corresponds to a vertical bar.

- The horizontal axis displays the number range.
- The vertical axis (frequency) represents the amount of data that is present in each range.
The number ranges depend upon the data that is being used.
Histogram is the easiest manner that can be used to visualize data distributions. Assume that a garden has 30 trees. Each tree is of a different height. The height of the trees (in inches): 61, 63, 64, 66, 68, 69, 69.5, 70, 72, 72.5, 73, 73.5, 74, 74.5, $76,76.2,76.5,77,77.5,78,78.5,79,79.2,80,81,82,83,84,85,87$. We can group the data as follows in a frequency distribution table by setting a range:

Height Range (ft)	Number of Trees (Frequency)
$60-65$	3
$66-70$	5
$71-75$	6
$76-80$	10
$81-85$	5
$86-90$	1

import matplotlib.pyplot as plt
import numpy as np
\# Creating dataset
$a=n p . \operatorname{array}([61,63,64,66,68,69,69.5,70,72$,

$$
72.5,73,73.5,74,74.5,76,76.2
$$

$$
76.5,77,77.5,78,78.5,79,79.2
$$

$$
80,81,82,83,84,85,87])
$$

\# Creating histogram
fig, ax $=$ plt.subplots(figsize $=(10,7)$)
ax.hist(a, bins $=[60,65,70,75,80,85,90])$
\# Show plot
plt.show()

1.2.10 Lollipop chart

A lollipop chart can be used to display ranking in the data. It is similar to an ordered bar chart. It is a variant of bar chart with a circle at the end to highlight the data value. Like bar chart lollipop chart is also used to compare categorical data. Let's consider the carDF dataset.
import matplotlib.pyplot as plt
import numpy as np

$\mathrm{y}=\operatorname{list}($ np. $\operatorname{linspace}(1,($ np. $\log (0.2 *$ np.pi) $), 10))$
plt.stem(x, y, use_line_collection = True)
plt.show()
y.sort()
plt.stem(x, y, use_line_collection = True)
plt.show()
plt.stem(x, y, markerfmt = 's', linefmt='--', basefmt = ':', use_line_collection=True) plt.show()

1.2.11 Guidelines to choose the best chart

There is no standard that defines which chart we should choose to visualize the data. The guidelines to choose the best chart are:
a. It is important to understand what type of data we have.
b. If we have continuous variables, then a histogram would be a good choice.
c. If we want to show ranking, an ordered bar chart would be a good choice.
d. The chart that effectively conveys the right and relevant meaning of the data without actually distorting the facts must be chosen.
e. Simplicity is best. It is considered better to draw a simple chart that is comprehensible than to draw sophisticated ones that require several reports and texts in order to understand them.
f. Choose a diagram that does not overload the audience with information. Our purpose should be to illustrate abstract information in a clear way.

Purpose	Charts
Show correlation	Scatter plot, Correlogram, Pairwise plot, Jittering with strip plot, Counts plot, Marginal histogram, Scatter plot with a line of best fit, Bubble plot with circling
Show deviation	Area chart, Diverging bars, Diverging texts, Diverging dot plot, Diverging lollipop plot with markers
Show distribution	Histogram for continuous variable, Histogram for categorical variable, Density plot, Categorical plots, Density curves with histogram, Population pyramid, Violin plot, Joy plot, Distributed dot plot, Box plot
Show composition	Waffle chart, Pie chart, Treemap, Bar chart

INDRA GANESAN COLLEGE OF ENGINEERING
 IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu - 620 012, India (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Assignment Question Paper

HoD/CSE

Name and Signature of the Faculty Incharge

Dr. G. Balakrishnan, M.E., Ph.D.,

INDRA GANESAN COLLEGE OF ENGINEERING
 IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu - 620 012, India

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Assignment Answer Sheet

Name of the Student : T- Wema.
AU Register Number: 811221104011

LGCNMAAMCELLIA $2622-23 O D P A T M 001$
INTERNAL ASSESSMENT TEST-1
Test Timer (FN) 11.30 om to 1.00 pm

ExAMCELLCOORDITATOR

PRINCill

copy ro
? The Director for fivour of kind information
2. The Principal (file copy)
3. All HoDs request to circalaze among their faculty members
4. Exam celt fte
5. Notice Board (Lab Block)

Vsion of the imatlunder. To rvalve is ρ centre of exceitence in Engineering. Technology and Monagement widh distinctive resuaril

\qquad

Dr. G. Balakrishnan, M.E., Ph.D., Indra Ganesan Coliege of Engineering IG Valley, Macurai Main Road Manikandam, Trichy-620 012.

Q. No.

Question

CO BIS
Part A
(Answer all the Questions $10 \times 2=20$ Marks)

PART B
(Answer all the Questions $2 \times 10=20 \mathrm{Marks}$)
11 a Describe the research goal, retrieving data and Data preparation process in Data Science
OR
$1 \quad 2$
11b Explain the benefits, uses, and facets of data

13 a (Answer all the Questions $1 \times 10=10 \mathrm{Mar}$
(i) Convert to a relative frequency distribution. When calculating
proportions, round numbers to two digits to the right of the decimal point.
(ii) Convert to a cumulative frequency distribution.
(iii) Convert to a cumulative percent frequency distribution.
(iii) Convert to a cumulative percent frequency distribution.

GRE	725	$700-$	$675-$	$650-$	$625-$	600	$575-$	$550-$	$525-$	$500-$
	749	724	699	674	649	624	599	574	549	524
\mathbf{f}	1	3	14	30	34	42	30	Total		

13 b Explain the different uses of data and variables with example

(Name/Sign / Date)

Dr. G. Balakrishrian, M.E., Ph.D., Principal
Indra Ganesan College of Engineering IG Valley, Madurai Main Road Manikandam, Trichy-620 012.

HoD
(Name / Sign / Date)

CS3352 - Foundation of Data Science
 Internal Assessment 1 Test
 Question with Key
 Part A

1. Define data science?

Data science is an interdisciplinary field that seeks to extract knowledge or insights from various forms of data.
2. Define streaming data

Streaming data is data that is generated continuously by thousands of data sources, which typically send in the data records simultaneously and in small sizes (order of Kilobytes).
3. Define outliers?

An outlier is an observation that lies an abnormal distance from other values in a random sample from a
4. Define Sanity Check?

A sanity check or sanity test is a basic test to quickly evaluate whether a claim or the result of a calculation can possibly be true.
5. List the disadvantage of combining data?

Data from different sources may be stored in different formats, making it difficult to create a seamless integration.
This may require additional time and resources for data cleaning and validation.
6. Define Key-Value stores

A key-value store, or key-value database is a simple database that uses an associative array (think of a map or dictionary) as the fundamental data model where each key is associated with one and only one value in a
7. Define frequency distribution?

Frequency distribution is a representation, either in a graphical or tabular format, that displays the number of observations within a given interval. The interval size depends on the data being analyzed and the goals of the analyst.
8. Define Percentile Ranks

The percentile rank of a score is the percentage of scores in its frequency distribution that are equal to or lower
9. Explain Histogram?

A histogram is a graphical representation of data points organized into user-specified ranges
10. Define Mean, Median and Mode

The arithmetic mean is found by adding the numbers and dividing the sum by the number of numbers in the list.
This is what is most often meant by an average. The median is the middle value in a list ordered from smallest to largest. The mode is the most frequently occurring value on the list

Part B

11. Describe the research goal, retrieving data and Data preparation process in Data Science

Defining research goals

Spend time understanding the goals and context of your research
Create a project charter

Retrieving data

Internal Data
External Data
Data Preparation (Cleansing, Integrating, Transforming Data)
Cleansing data
Overview of common errors
Data Entry Errors
Redundant Whitespace
Fixing Capital Letter Mismatches
Impossible Values and Sanity Checks
Outliers
Dealing with Missing Values
Integrating data
12. Explain the benefits, uses, and facets of data

Benefits and uses of data science
Data science and big data are used almost everywhere in both commercial and noncommercial Settings

Dr. G. Balakrishnan, M.E., Ph.D.,
Principal
Indra Ganesan College of Engineering
IG Valley, Madurai Main foad
Manikandam, Trichy- 620012.

- Commercial companies in almost every industry use data science and big data to gain insights into their customers, processes, staff, completion, and products.
- Many companies use data science to offer customers a better user experience, as well as to cross-sell, up-sell, and personalize their offerings.
- Governmental organizations are also aware of data's value. Many governmental organizations not only rely on internal data scientists to discover valuable information, but also share their data with the public.
- Nongovernmental organizations (NGOs) use it to raise money and defend their causes.
- Universities use data science in their research but also to enhance the study experience of their students. The rise of massive open online courses (MOOC) produces a lot of data, which allows universities to study how this type of learning can complement traditional classes.

Facets of data

In data science and big data you'll come across many different types of data, and each of them tends to require different tools and techniques. The main categories of data are these:

- Structured
- Unstructured
- Natural language
- Machine-generated
- Graph-based
- Audio, video, and images
- Streaming

13. Describe the architecture of Data Warehouse

Fig 1.15:1. Three tier architecture
14. Explain the Data Exploration, data modelling, and presentation process in Data Science -The visualization techniques you use in this phase range from simple line graphs or histograms, to more complex diagrams such as Sankey and network graphs.

Data Modelling

- Selection of a modeling technique and variables to enter in the model
- Execution of the model
- Diagnosis and model comparison

Presenting findings and building applications
15. GRE scores for a group of graduate school applicants are distributed as follows:
(i) Convert to a relative frequency distribution. When calculating proportions, round numbers to two digits to the right of the decimal point.

From $13 / 200=.065$, which rounds to 0.17.
(ii) Convert to a cumulative frequency distribution.
(iii) Convert to a cumulative percent frequency distribution.

16. Explain the different types of data and variables with example THREE TYPES OF DATA

Qualitative data
Ranked data.
Quantitative data

TYPES OF VARIABLES

Discrete and Continuous Variables
Independent and Dependent Variables

Signature of the Faculty

Dr, G, Balakrishnan, M.E., Ph.D.,
Principal
Indra Ganesan College of Engineering IG Valley, Madurai Main Road
Manikandam, Trichy-620 012.

INDRA GANESA COLLEGE OF ENGINEERING
 IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu - 622 012, India
 (Approved by AICTE, New Delhi and affiliated to Anna University, Chennai)

Internal Assessment Test Answer Book

INDRA GANESAN COLLEGE OF ENGINEERING
 IG VALLEY, MANIDANDAM, TIRUCHIRAPPALLI - 620012 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ACADEMIC YEAR 2022-2023 (ODD SEMESTER)
 STUDENTS MARK STATEMENT-CO BASED
 INTERNAL ASSESSMENT TEST-I
 SUBIECT CODE \&TITLE: CS3352 \& Foundations of Data Science

YEAR/SEM: I/III

Dr. G. Balakrishnan, M.E., Ph.D., Principal
Indra Ganesan College of Engineering IG Valley, Madurai Main Read Manikandam, Trichy-620 012.

29.	811221104038	SUMAIYA BEGAN S	26	12	38	96
30.	811221104040	SURUTHI Y	28	11	42	84
31.	811221104041	SURYA D	20	9	29	58
32.	811221104043	SHED ANWAR S	25	10	35	70
33.	811221104045	VASANTHAVELS	16	18	24	48
34.	811221104046	VENGADESWARIM	24	10	34	68
35.	811221104048	VISHWA S	23	9	32	64
36.	811221104049	YOGAPRIYAN	27	10	31	74

MARKS RANGE:

<20	$20-30$	$31-40$	$\mathbf{4 1 - 5 0}$	$51-60$	$61-70$	$71-80$	$81-90$	$91-100$
0	0	3	4	9	7	9	6	2

Total No.of Candidates Present	36
Total No.of Candidates Absent	0
Total No.of Students Pass	33
Total No. of Students Fail	3
Percentage of Pass	91%

Dr. G. Balakyishnan, M.E., Pho.,
Indra Ganesan College of Engineering IG Valley, Madurai Main Read Manikandam, Trichy- 620012.
INDRA GANESAN COLLEGE OF ENGINEERING
IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu - 620 012, India
(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)
DEPARTMENT OF COMPUTER SCEINCE AND ENGINEERING

ROOT CAUSE ANALYSIS

	batch no	NAME OF THE STUDENT	CAUSES FOR FAllure	SIGNATURE OF TRE STUENT WITH DATE	Corrective action taken	preventive ACTION TAKEN	followup STATUS	$\begin{aligned} & \text { REMARKS } \\ & \text { OFTHE } \\ & \text { HOD } \end{aligned}$
	81122104004	DHINESHC	Two marks notattendes.	C. Dhy	Relest	Assigriment		
	811221104031	SAnTHOSH M	conbent not enough.	$M, \$$	Relest	Asrogrmar		
	81221104045	VASANMHAVEL	Not attendel de ouresh.	0.46	Relest	Assogrmanar		

(Name /Sign / Date)

Dr. G. Balakrishnan, M.E., Ph.D., Principal Engineering
Indra Ganesan College of Eng IG Valley, Madurai Main Road

(Name/Sign / Date)

CS3352-Foundation of Data Science
 Internal Assessment Retest 1 Question with Key
 Part A

1. Define mining?

Data mining is the process of sorting through large data sets to identify patterns and relationships that can help solve business problems through data analysis. Data mining techniques and tools enable enterprises to predict future trends and make more-informed business decisions.
2. Define streaming data

Streaming data is data that is generated continuously by thousands of data sources, which typically send in the data records simultaneously and in small sizes (order of Kilobytes).
3. Define outliers?

An outlier is an observation that lies an abnormal distance from other values in a random sample from a
population
4. Differentiate structure data and unstructured data

5. List the disadvantage of combining data?

Data from different sources may be stored in different formats, making it difficult to create a seamless integration.
This may require additional time and resources for data cleaning and validation.
Define Key-Value stores
6. Define Key-Value stores

A key-value store, or key-value database is a simple database that uses an associative array (think of a map or
dictionary) as the fundamental data model where each dictionary) as the fundamental data model where each key is associated with one and only one value in a
collection.
7. Define frequency distribution?

Frequency distribution is a representation, either in a graphical or tabular format, that displays the number of observations within a given interval. The interval size depends on the data being analyzed and the goals of the
analyst.
8. Define Percentile Ranks

The percentile rank of a score is the percentage of scores in its frequency distribution that are equal to or lower
9. Explain Histogram?

A histogram is a graphical representation of data points organized into user-specified ranges.
10. Define Mean, Median and Mode
The arithmetic mean is found by adding the numbers and dividing the sum by the number of numbers in the list. This is what is most often meant by an average. The median is the middle value in a list ordered from smallest to
largest. The mode is the most frequently occurning value on the list

Part B

11. Describe the research goal, retrieving data and Data preparation process in Data Science
Defining research got*

Spend time understanding the goals and context of your research
Create a project charter

Retrieving data

Internal Data
Extertal Data
Data Preparation (Cleansing, Integrating, Transforming Data)
Cleansing data
Overview of common errors
Data Entry Errors

Dr. G. Balakrishnan, M.E., Ph.D., Principal

Redundant Whitespace

Fixing Capital Letter Mismatches
Impossible Values and Sanity Checks
Outliers
Dealing with Missing Values
Integrating data
12. Describe the architecture of Data Warehouse

13. Explain the benefits, uses, and facets of data

Benefits and uses of data science

Data science and big data are used almost everywhere in both commercial and noncommercial Settings

- Commercial companies in almost every industry use data science and big data to gain insights into their customers, processes, staff, completion, and products.
- Many companies use data science to offer customers a better user experience, as well as to cross-sell, up-sell, and personalize their offerings.
- Governmental organizations are also aware of data's value. Many governmental organizations not only rely on internal data scienlists to discover valuable information, but also share their data with the public.
- Nongovermmental organizations (NGOs) use it to raise money and defend their causes.
- Universities use data science in their research but also to enhance the study experience of their students. The rise of massive open online courses (MOOC) produces a lot of data, which allows universities to study how this type of learning can complement traditional classes.

Facets of data

In data science and big data you'll come across many different types of data, and each of them tends to require different tools and techniques. The main categories of data are these:

- Structured
- Unstructured
- Natural language
- Machine-generated
- Graph-based
- Audio, video, and images
- Streaming

14. Explain the Data Exploration, data modelling, and presentation process in Data Science
-The visualization techniques you use in this phase range from simple line graphs or histograms, to more complex diagrams such as Sankey and network graphs.
Data Modelling

- Selection of a modeling technique and variables to enter in the model
- Execution of the model
- Diagnosis and model comparison

Presenting findings and building applications
15. The IQ scores for a group of 35 high school dropouts are as follows
(a) Construct a frequency distribution for grouped data.
(a) Calculating the class width,

$$
\frac{123-69}{10}=\frac{54}{10}=5.4
$$

Round off to a convenient number, such as 5

(b) Specify the real limits for the lowest class interval in this frequency distribution 64.5-69.5
16. Explain the different types of data and variables with example

Three types of data
Qualitative data
Ranked data.
Quantitative data

Types of Variables

Discrete and Continuous Variables
Independent and Dependent Variables

Signature of the Faculty

Dr. G. Balakrishnan, M.E., Ph.D.,
Principal
Indra Ganesan College of Engineering
IG Valley, Madurai Main Road
Manikandam, Trichy-620 012.

INDRA GANESAN COLLEGE OF ENGINEERING
 IG Valley, Manikandam, Tiruchirappalli, Tamil Nadu - 622 012, India (Approved by AICTE, New Delhi and affiliated to Anna University, Chennai)

Internal Assessment Retest Answer Book

Course Outcomes To be filled by the examiner							
Course Outcomes	32	18	3	4	5	6	Total
Marks Obtained	32	10					50
ME. Ph.D.,							
DeCCBalakrishnat Min							
arca Ganesan College of Eng Road. ${ }^{\text {ases }}$						Name	ignature
						of the IO	member

INDRA GANESA COLLEGE OF ENGINEERING

 IG VALLEY, MANIDANDAM, TIRUCHIRAPPALLI - 620012 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERINGACADEMIC YEAR 2022-2023 (ODD SEMESTER)

STUDENTS MARK STATEMENT- CO BASED

INTERNAL ASSESSMENT RETEST-I
SUBJECT CODE \&TITLE: CS3352 \& Foundations of Data Science
YEAR/SEM: II/III
MONTH \& YEAR: $20 \cdot 10 \cdot 2022$

S.NO	REG NO	STUDENT NAME	CO203.1 $(\mathbf{3 2)}$	CO203.2 $(\mathbf{1 8)}$	TOTAL $(\mathbf{5 0)}$	TOTAL $(\mathbf{1 0 0})$
1.	811221104004	DHINESHC	23	6	29	58
2.	811221104031	SANTHOSH P	23	9	32	64
3.	811221104045	VASANTHAVEL S	22	10	32	64
4.						
5.						

MARKS RANGE:

<20	$20-30$	$31-40$	$41-50$	$51-60$	$61-70$	$71-80$	$81-90$	$91-100$
0	0	0	0	1	2	0	0	0

Total No.of Candidates Present	3
Total No.of Candidates Absent	0
Total No.of Students Pass	3
Total No. of Students Fail	0
Percentage of Pass	100%

Hod/CSE

PRINCIPAL

Dr. G. Balakrishñàn, M.E., Phi."
Principal!
Indra Ganesan College of Engineering
IG Valley, Madurai Main Road
Manikandam, Trichy-620 012.

