

Criteria 1 Curricular Aspects 100

1.1 Curricular Planning and Implementation (20)

1.1.1 The Institution ensures effective curriculum planning and

delivery through a well-planned and documented process

including Academic calendar and conduct of continuous

internal Assessment

Table of Content

S. No Description

1. Preface of the Course File

2. Review of Course File

3. Faculty Time Table

4. Course Plan

5. Course Committee Meeting

6. Content Beyond Syllabus

7. Rubrics Base Evaluation

8. Academic Audit Form

9. Student Feed Back on Faculty

10. Internal Assessment Schedule

11. Question Paper

12. Answer Key

13. Sample Answer Sheet

14. Co Based Mark Entry

15. Root Cause Analysis

16. Retest Question Paper

17. Retest Sample Answer Sheet

18. Retest Co Based Mark Entry

7

1.2 Visual Aids for EDA
1.2.1 Introduction

The two important goals of data scientist would be to extract knowledge from the

data and to present the data to stakeholders. Presenting results to stakeholders is

very complex in the sense that the stakeholders may not have enough technical

knowledge to understand programming terminologies and other technicalities.

Hence, visual aids are very useful tools. The following are some of the visual aids

for EDA.

 Line chart

 Bar chart

 Scatter plot

 Area plot and stacked plot

 Pie chart

 Table chart

 Polar chart

 Histogram

 Lollipop chart

1.2.2 Line chart

A line chart is a type of chart used to visualize the value of something over time.

It is used to find trends in data over time. The chart consists of a horizontal x-axis

and a vertical y-axis. Eg. The number of houses sold during various months of the

year. The x-axis shows the time period whereas the y-axis shows the item that is

being measured. A line chart clearly shows the increasing or decreasing trend of a

particular item.

Simple Line Chart

A simple line chart is plotted with only a single line that shows the relationship

between two different variables

Multiple Line Chart

A multiple line chart is a line chart that is plotted with two or more lines. When

we need to show data about two or more variables that have varying data points

depending on the period of time, a multiple line chart can be used. This type of

line chart is also helpful when we need to compare data like temperatures, prices,

etc. The image below shows the comparison of prices of Mercedez-Benz among

three cities.

8

Example:
import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5, 6, 7, 8, 9]

y1 = [1, 3, 5, 3, 1, 3, 5, 3, 1]

y2 = [2, 4, 6, 4, 2, 4, 6, 4, 2]

plt.plot(x, y1, label="line L")

plt.plot(x, y2, label="line H")

plt.plot()

plt.xlabel("x axis")

plt.ylabel("y axis")

plt.title("Line Graph Example")

plt.legend()
plt.show()

1.2.3 Bar chart

This is one of the most common types of visualization. Bars can be drawn

horizontally or vertically to represent categorical variables. Bar charts are

frequently used to distinguish objects between distinct collections in order to track

variations over time. In most cases, bar charts are very convenient when the

changes are large.
import matplotlib.pyplot as plt

The index 4 and 6 demonstrate overlapping cases.

x1 = [1, 3, 4, 5, 6, 7, 9]

y1 = [4, 7, 2, 4, 7, 8, 3]

x2 = [2, 4, 6, 8, 10]

y2 = [5, 6, 2, 6, 2]

plt.bar(x1, y1, label="Blue Bar", color='b')

plt.bar(x2, y2, label="Green Bar", color='g')

plt.plot()

plt.xlabel("bar number")

plt.ylabel("bar height")

plt.title("Bar Chart Example")
plt.legend()

plt.show()

9

1.2.4 Scatter plot

Scatter plots are also called scatter graphs, scatter charts, scattergrams, and scatter

diagrams. They use a Cartesian coordinates system to display values of typically

two variables for a set of data.

Scatter plots can be constructed in the following two situations:

 When one continuous variable is dependent on another variable, which is under

the control of the observer.

 When both continuous variables are independent

There are two important concepts—independent variable and dependent

variable. In statistical modeling or mathematical modeling, the values of

dependent variables rely on the values of independent variables. The dependent

variable is the outcome variable being studied. The independent variables are also

referred to as regressors. The scatter plots are used when we need to show the

relationship between two variables, and hence are sometimes referred to as

correlation plots.
import matplotlib.pyplot as plt
x1 = [2, 3, 4]

y1 = [5, 5, 5]

x2 = [1, 2, 3, 4, 5]

y2 = [2, 3, 2, 3, 4]

y3 = [6, 8, 7, 8, 7]

plt.scatter(x1, y1)

plt.scatter(x2, y2, marker='v', color='r')

plt.scatter(x2, y3, marker='^', color='m')

plt.title('Scatter Plot Example')

plt.show()

Bubble chart

A bubble plot is a scatter plot where each data point on the graph is shown as a

bubble. Each bubble can be illustrated with a different color, size, and appearance.

10

1.2.5 Area plot and stacked plot

An area plot is a line plot that shows the area covered under the line by filling it

with a color. Several such plots can be stacked on top of one another, giving the

feeling of a stack and hence the name stacked plot. The stacked plot can be useful

when we want to visualize the cumulative effect of multiple variables being

plotted on the y axis.
import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5, 6, 7, 8, 9]

y1 = [23, 40, 28, 43, 8, 44, 43, 18, 17]

y2 = [17, 30, 22, 14, 17, 17, 29, 22, 30]

y3 = [15, 31, 18, 22, 18, 19, 13, 32, 39]
Adding legend for stack plots is tricky.

plt.plot([], [], color='r', label = 'D 1')

plt.plot([], [], color='g', label = 'D 2')

plt.plot([], [], color='b', label = 'D 3')

plt.stackplot(x, y1, y2, y3, colors= ['r', 'g', 'b'])
plt.title('Stack Plot Example')

plt.legend()

plt.show()

1.2.6 Pie chart

A pie chart (or a circle chart) is a circular statistical graphic, which is divided into

slices to illustrate numerical proportion. In a pie chart, the arc length of each

slice and area is proportional to the quantity it represents. Pie charts are very

widely used in the business world and the mass media. But, experts recommend

avoiding them, as research has shown it is difficult to compare different sections

of a given pie chart, or to compare data across different pie charts. Pie charts can

be replaced in most cases by other plots such as the bar chart, box plot, dot plot,

etc.
import matplotlib.pyplot as plt

labels = 'S1', 'S2', 'S3'

sections = [56, 66, 24]

colors = ['c', 'g', 'y']

plt.pie(sections, labels=labels, colors=colors,

 startangle=90,

 explode = (0, 0.1, 0),

 autopct = '%1.2f%%')
plt.axis('equal') # Try commenting this out.

plt.title('Pie Chart Example')

plt.show()

11

1.2.7 Table chart

A table chart combines a bar chart and a table. In order to understand the table

chart, let's consider the following dataset. Consider standard LED bulbs that come

in different wattages. The standard Philips LED bulb can be 4.5 Watts, 6 Watts, 7

Watts, 8.5 Watts, 9.5 Watts, 13.5 Watts, and 15 Watts. Let's assume there are two

categorical variables, the year and the wattage, and a numeric variable, which is

the number of units sold in a particular year.
import numpy as np

import matplotlib.pyplot as plt

Years under consideration

years = ["2010", "2011", "2012", "2013", "2014"]

Available watt

columns = ['4.5W', '6.0W', '7.0W','8.5W']

unitsSold = [

[65, 141, 88, 111],

[85, 142, 89, 112],

[75, 143, 90, 113],

[65, 144, 91, 114],
[55, 145, 92, 115],

]

Define the range and scale for the y axis

values = np.arange(0, 600, 100)

colors = plt.cm.OrRd(np.linspace(0, 0.7, len(years)))

index = np.arange(len(columns)) + 0.3

bar_width = 0.7

y_offset = np.zeros(len(columns))

fig, ax = plt.subplots()

cell_text = []

n_rows = len(unitsSold)
for row in range(n_rows):

 plot = plt.bar(index, unitsSold[row], bar_width, bottom=y_offset,

 color=colors[row])

 y_offset = y_offset + unitsSold[row]

 cell_text.append(['%1.1f' % (x) for x in y_offset])

Add a table to the bottom of the axes

the_table = plt.table(cellText=cell_text, rowLabels=years,

rowColours=colors, colLabels=columns, loc='bottom')

plt.ylabel("Units Sold")

plt.xticks([])

plt.title('Number of LED Bulb Sold/Year')
plt.show()

12

1.2.8 Polar chart

A polar chart is a diagram that is plotted on a polar axis. Its coordinates are angle

and radius, as opposed to the Cartesian system of x and y coordinates. Sometimes,

it is also referred to as a spider web plot. Let's see how we can plot an example of

a polar chart.

First, let's create the dataset:

1. Let's assume there are five courses in the academic year:

subjects = ["C programming", "Numerical methods", "Operating

system", "DBMS", "Computer Networks"]

2. And a student obtained the following grades in each subject:

plannedGrade = [90, 95, 92, 68, 68, 90]

3. However, after final examination, these are the grades that the student got:

actualGrade = [75, 89, 89, 80, 80, 75]

Now that the dataset is ready, let's try to create a polar chart. The first significant

step is to initialize the spider plot. This can be done by setting the figure size and

polar projection. Note that in the preceding dataset, the list of grades contains an

extra entry. This is because it is a circular plot and we need to connect the first

point and the last point together to form a circular flow. Hence, we copy the first

entry from each list and append it to the list. In the preceding data, the entries 90

and 75 are the first entries of the list respectively. Let's look at each step:
1. Import the required libraries:

import numpy as np

import matplotlib.pyplot as plt

2. Prepare the dataset and set up theta:
theta = np.linspace(0, 2 * np.pi, len(plannedGrade))

3. Initialize the plot with the figure size and polar projection:

plt.figure(figsize = (10,6))

plt.subplot(polar=True)

4. Get the grid lines to align with each of the subject names:

(lines,labels) = plt.thetagrids(range(0,360,

int(360/len(subjects))), (subjects))

5. Use the plt.plot method to plot the graph and fill the area under it:

plt.plot(theta, plannedGrade)

plt.fill(theta, plannedGrade, 'b', alpha=0.2)

6. Now, we plot the actual grades obtained:

plt.plot(theta, actualGrade)
7. We add a legend and a nice comprehensible title to the plot:

plt.legend(labels=('Planned Grades','Actual Grades'),loc=1)

plt.title("Plan vs Actual grades by Subject")

8. Finally, we show the plot on the screen:

plt.show()

The generated polar chart is shown in the following screenshot:

13

1.2.9 Histogram

A histogram is the graphical representation of data where data is grouped into

continuous number ranges and each range corresponds to a vertical bar.

 The horizontal axis displays the number range.

 The vertical axis (frequency) represents the amount of data that is present in

each range.

The number ranges depend upon the data that is being used.

Histogram is the easiest manner that can be used to visualize data distributions.

Assume that a garden has 30 trees. Each tree is of a different height. The height of

the trees (in inches): 61, 63, 64, 66, 68, 69, 69.5, 70, 72, 72.5, 73, 73.5, 74, 74.5,

76, 76.2, 76.5, 77, 77.5, 78, 78.5, 79, 79.2, 80, 81, 82, 83, 84, 85, 87. We can

group the data as follows in a frequency distribution table by setting a range:

Height Range (ft) Number of Trees

(Frequency)

60 - 65 3

66 - 70 5

71 - 75 6

76 - 80 10

81 - 85 5

86 - 90 1

import matplotlib.pyplot as plt

import numpy as np

Creating dataset

a = np.array([61, 63, 64, 66, 68, 69, 69.5, 70, 72,

 72.5, 73, 73.5, 74, 74.5, 76, 76.2,

 76.5, 77, 77.5, 78, 78.5, 79, 79.2,

 80, 81, 82, 83, 84, 85, 87])

Creating histogram

fig, ax = plt.subplots(figsize =(10, 7))

ax.hist(a, bins = [60,65,70,75,80,85,90])

Show plot

plt.show()

14

1.2.10 Lollipop chart

A lollipop chart can be used to display ranking in the data. It is similar to an

ordered bar chart. It is a variant of bar chart with a circle at the end to highlight

the data value. Like bar chart lollipop chart is also used to compare categorical

data. Let's consider the carDF dataset.
import matplotlib.pyplot as plt

import numpy as np

x = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']

y = list(np.linspace(1, (np.log(0.2 * np.pi)), 10))

plt.stem(x, y, use_line_collection = True)

plt.show()

y.sort()

plt.stem(x, y, use_line_collection = True)

plt.show()

plt.stem(x, y, markerfmt = 's', linefmt='--', basefmt = ':', use_line_collection=True)

plt.show()

1.2.11 Guidelines to choose the best chart

There is no standard that defines which chart we should choose to visualize the data. The

guidelines to choose the best chart are:

a. It is important to understand what type of data we have.

b. If we have continuous variables, then a histogram would be a good choice.

c. If we want to show ranking, an ordered bar chart would be a good choice.

d. The chart that effectively conveys the right and relevant meaning of the data without

actually distorting the facts must be chosen.

e. Simplicity is best. It is considered better to draw a simple chart that is comprehensible

than to draw sophisticated ones that require several reports and texts in order to understand

them.

f. Choose a diagram that does not overload the audience with information. Our purpose

should be to illustrate abstract information in a clear way.

Purpose Charts
Show correlation

Scatter plot, Correlogram, Pairwise plot, Jittering with strip plot, Counts

plot, Marginal histogram, Scatter plot with a line of best fit, Bubble plot

with circling

Show deviation

Area chart, Diverging bars, Diverging texts, Diverging dot plot, Diverging

lollipop plot with markers

Show distribution

Histogram for continuous variable, Histogram for categorical variable,
Density plot, Categorical plots, Density curves with histogram, Population

pyramid, Violin plot, Joy plot, Distributed dot plot, Box plot

Show composition Waffle chart, Pie chart, Treemap, Bar chart

	3ab73ee2f301b5b8b65486083b9c6243446d849cc0b7339ef49e1ad247c0aef8.pdf
	7f6c50d2b06c263fcfeea4b007d5da79c83161642c67a103dd0c64235bd56ce1.pdf
	SKM_22724021902260
	SKM_22724021902260
	SKM_22724021902260
	abd9b9ce8f7776cbb8a0376391858d2aa55d4aa0a6920ce58bfacb66c6b8dca2.pdf
	SKM_22724021902260
	SKM_22724021902260
	SKM_22724021902260
	SKM_22724021902260
	SKM_22724021902260
	SKM_22724021902260

